| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsex | Structured version Visualization version GIF version | ||
| Description: Every surreal has a negative. Note that this theorem, addscl 27934, addscom 27919, addsass 27958, addsrid 27917, and sltadd1im 27938 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsex | ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negscl 27988 | . 2 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 2 | negsid 27993 | . 2 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
| 3 | oveq2 7363 | . . . 4 ⊢ (𝑥 = ( -us ‘𝐴) → (𝐴 +s 𝑥) = (𝐴 +s ( -us ‘𝐴))) | |
| 4 | 3 | eqeq1d 2735 | . . 3 ⊢ (𝑥 = ( -us ‘𝐴) → ((𝐴 +s 𝑥) = 0s ↔ (𝐴 +s ( -us ‘𝐴)) = 0s )) |
| 5 | 4 | rspcev 3574 | . 2 ⊢ ((( -us ‘𝐴) ∈ No ∧ (𝐴 +s ( -us ‘𝐴)) = 0s ) → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∃wrex 3058 ‘cfv 6489 (class class class)co 7355 No csur 27588 0s c0s 27776 +s cadds 27912 -us cnegs 27971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-nadd 8590 df-no 27591 df-slt 27592 df-bday 27593 df-sle 27694 df-sslt 27731 df-scut 27733 df-0s 27778 df-made 27798 df-old 27799 df-left 27801 df-right 27802 df-norec 27891 df-norec2 27902 df-adds 27913 df-negs 27973 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |