| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negsex | Structured version Visualization version GIF version | ||
| Description: Every surreal has a negative. Note that this theorem, addscl 27929, addscom 27914, addsass 27953, addsrid 27912, and sltadd1im 27933 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.) |
| Ref | Expression |
|---|---|
| negsex | ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negscl 27983 | . 2 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
| 2 | negsid 27988 | . 2 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
| 3 | oveq2 7377 | . . . 4 ⊢ (𝑥 = ( -us ‘𝐴) → (𝐴 +s 𝑥) = (𝐴 +s ( -us ‘𝐴))) | |
| 4 | 3 | eqeq1d 2731 | . . 3 ⊢ (𝑥 = ( -us ‘𝐴) → ((𝐴 +s 𝑥) = 0s ↔ (𝐴 +s ( -us ‘𝐴)) = 0s )) |
| 5 | 4 | rspcev 3585 | . 2 ⊢ ((( -us ‘𝐴) ∈ No ∧ (𝐴 +s ( -us ‘𝐴)) = 0s ) → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| 6 | 1, 2, 5 | syl2anc 584 | 1 ⊢ (𝐴 ∈ No → ∃𝑥 ∈ No (𝐴 +s 𝑥) = 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ‘cfv 6499 (class class class)co 7369 No csur 27585 0s c0s 27772 +s cadds 27907 -us cnegs 27966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27588 df-slt 27589 df-bday 27590 df-sle 27691 df-sslt 27728 df-scut 27730 df-0s 27774 df-made 27793 df-old 27794 df-left 27796 df-right 27797 df-norec 27886 df-norec2 27897 df-adds 27908 df-negs 27968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |