MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negsex Structured version   Visualization version   GIF version

Theorem negsex 27991
Description: Every surreal has a negative. Note that this theorem, addscl 27930, addscom 27915, addsass 27954, addsrid 27913, and sltadd1im 27934 are the ordered Abelian group axioms. However, the surreals cannot be said to be an ordered Abelian group because No is a proper class. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negsex (𝐴 No → ∃𝑥 No (𝐴 +s 𝑥) = 0s )
Distinct variable group:   𝑥,𝐴

Proof of Theorem negsex
StepHypRef Expression
1 negscl 27984 . 2 (𝐴 No → ( -us𝐴) ∈ No )
2 negsid 27989 . 2 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
3 oveq2 7378 . . . 4 (𝑥 = ( -us𝐴) → (𝐴 +s 𝑥) = (𝐴 +s ( -us𝐴)))
43eqeq1d 2731 . . 3 (𝑥 = ( -us𝐴) → ((𝐴 +s 𝑥) = 0s ↔ (𝐴 +s ( -us𝐴)) = 0s ))
54rspcev 3585 . 2 ((( -us𝐴) ∈ No ∧ (𝐴 +s ( -us𝐴)) = 0s ) → ∃𝑥 No (𝐴 +s 𝑥) = 0s )
61, 2, 5syl2anc 584 1 (𝐴 No → ∃𝑥 No (𝐴 +s 𝑥) = 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  cfv 6500  (class class class)co 7370   No csur 27586   0s c0s 27773   +s cadds 27908   -us cnegs 27967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-1o 8412  df-2o 8413  df-nadd 8608  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27692  df-sslt 27729  df-scut 27731  df-0s 27775  df-made 27794  df-old 27795  df-left 27797  df-right 27798  df-norec 27887  df-norec2 27898  df-adds 27909  df-negs 27969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator