MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negnegs Structured version   Visualization version   GIF version

Theorem negnegs 27871
Description: A surreal is equal to the negative of its negative. Theorem 4(ii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.)
Assertion
Ref Expression
negnegs (𝐴 No → ( -us ‘( -us𝐴)) = 𝐴)

Proof of Theorem negnegs
StepHypRef Expression
1 negscl 27863 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
21negsidd 27869 . . 3 (𝐴 No → (( -us𝐴) +s ( -us ‘( -us𝐴))) = 0s )
31negscld 27864 . . . 4 (𝐴 No → ( -us ‘( -us𝐴)) ∈ No )
43, 1addscomd 27799 . . 3 (𝐴 No → (( -us ‘( -us𝐴)) +s ( -us𝐴)) = (( -us𝐴) +s ( -us ‘( -us𝐴))))
5 negsid 27868 . . 3 (𝐴 No → (𝐴 +s ( -us𝐴)) = 0s )
62, 4, 53eqtr4d 2781 . 2 (𝐴 No → (( -us ‘( -us𝐴)) +s ( -us𝐴)) = (𝐴 +s ( -us𝐴)))
7 id 22 . . 3 (𝐴 No 𝐴 No )
83, 7, 1addscan2d 27831 . 2 (𝐴 No → ((( -us ‘( -us𝐴)) +s ( -us𝐴)) = (𝐴 +s ( -us𝐴)) ↔ ( -us ‘( -us𝐴)) = 𝐴))
96, 8mpbid 231 1 (𝐴 No → ( -us ‘( -us𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412   No csur 27488   0s c0s 27670   +s cadds 27791   -us cnegs 27847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-nadd 8671  df-no 27491  df-slt 27492  df-bday 27493  df-sle 27593  df-sslt 27629  df-scut 27631  df-0s 27672  df-made 27689  df-old 27690  df-left 27692  df-right 27693  df-norec 27770  df-norec2 27781  df-adds 27792  df-negs 27849
This theorem is referenced by:  sltneg  27872  negs11  27876  negsfo  27880  negsbday  27884  negsubsdi2d  27903  mul2negsd  27977  abssneg  28056  absslt  28058  renegscl  28108
  Copyright terms: Public domain W3C validator