![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negnegs | Structured version Visualization version GIF version |
Description: A surreal is equal to the negative of its negative. Theorem 4(ii) of [Conway] p. 17. (Contributed by Scott Fenton, 3-Feb-2025.) |
Ref | Expression |
---|---|
negnegs | ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negscl 27863 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘𝐴) ∈ No ) | |
2 | 1 | negsidd 27869 | . . 3 ⊢ (𝐴 ∈ No → (( -us ‘𝐴) +s ( -us ‘( -us ‘𝐴))) = 0s ) |
3 | 1 | negscld 27864 | . . . 4 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) ∈ No ) |
4 | 3, 1 | addscomd 27799 | . . 3 ⊢ (𝐴 ∈ No → (( -us ‘( -us ‘𝐴)) +s ( -us ‘𝐴)) = (( -us ‘𝐴) +s ( -us ‘( -us ‘𝐴)))) |
5 | negsid 27868 | . . 3 ⊢ (𝐴 ∈ No → (𝐴 +s ( -us ‘𝐴)) = 0s ) | |
6 | 2, 4, 5 | 3eqtr4d 2781 | . 2 ⊢ (𝐴 ∈ No → (( -us ‘( -us ‘𝐴)) +s ( -us ‘𝐴)) = (𝐴 +s ( -us ‘𝐴))) |
7 | id 22 | . . 3 ⊢ (𝐴 ∈ No → 𝐴 ∈ No ) | |
8 | 3, 7, 1 | addscan2d 27831 | . 2 ⊢ (𝐴 ∈ No → ((( -us ‘( -us ‘𝐴)) +s ( -us ‘𝐴)) = (𝐴 +s ( -us ‘𝐴)) ↔ ( -us ‘( -us ‘𝐴)) = 𝐴)) |
9 | 6, 8 | mpbid 231 | 1 ⊢ (𝐴 ∈ No → ( -us ‘( -us ‘𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 No csur 27488 0s c0s 27670 +s cadds 27791 -us cnegs 27847 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-1o 8472 df-2o 8473 df-nadd 8671 df-no 27491 df-slt 27492 df-bday 27493 df-sle 27593 df-sslt 27629 df-scut 27631 df-0s 27672 df-made 27689 df-old 27690 df-left 27692 df-right 27693 df-norec 27770 df-norec2 27781 df-adds 27792 df-negs 27849 |
This theorem is referenced by: sltneg 27872 negs11 27876 negsfo 27880 negsbday 27884 negsubsdi2d 27903 mul2negsd 27977 abssneg 28056 absslt 28058 renegscl 28108 |
Copyright terms: Public domain | W3C validator |