Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnre | Structured version Visualization version GIF version |
Description: A positive integer is a real number. (Contributed by NM, 18-Aug-1999.) |
Ref | Expression |
---|---|
nnre | ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssre 11986 | . 2 ⊢ ℕ ⊆ ℝ | |
2 | 1 | sseli 3918 | 1 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) |
Copyright terms: Public domain | W3C validator |