Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmulcom Structured version   Visualization version   GIF version

Theorem nnmulcom 39248
Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmulcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem nnmulcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7156 . . . . 5 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
2 oveq2 7157 . . . . 5 (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1))
31, 2eqeq12d 2836 . . . 4 (𝑥 = 1 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (1 · 𝐵) = (𝐵 · 1)))
43imbi2d 343 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))))
5 oveq1 7156 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
6 oveq2 7157 . . . . 5 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
75, 6eqeq12d 2836 . . . 4 (𝑥 = 𝑦 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝑦 · 𝐵) = (𝐵 · 𝑦)))
87imbi2d 343 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦))))
9 oveq1 7156 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
10 oveq2 7157 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1)))
119, 10eqeq12d 2836 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))
1211imbi2d 343 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
13 oveq1 7156 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
14 oveq2 7157 . . . . 5 (𝑥 = 𝐴 → (𝐵 · 𝑥) = (𝐵 · 𝐴))
1513, 14eqeq12d 2836 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝐴 · 𝐵) = (𝐵 · 𝐴)))
1615imbi2d 343 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴))))
17 nnmul1com 39247 . . 3 (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))
18 simp3 1133 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝑦 · 𝐵) = (𝐵 · 𝑦))
19173ad2ant2 1129 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (1 · 𝐵) = (𝐵 · 1))
2018, 19oveq12d 7167 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
21 simp1 1131 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℕ)
22 1nn 11642 . . . . . . . 8 1 ∈ ℕ
2322a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℕ)
24 simp2 1132 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℕ)
25 nnadddir 39246 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2621, 23, 24, 25syl3anc 1366 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2724nncnd 11647 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℂ)
2821nncnd 11647 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℂ)
29 1cnd 10629 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℂ)
3027, 28, 29adddid 10658 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
3120, 26, 303eqtr4d 2865 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))
32313exp 1114 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 · 𝐵) = (𝐵 · 𝑦) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
3332a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
344, 8, 12, 16, 17, 33nnind 11649 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴)))
3534imp 409 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  (class class class)co 7149  1c1 10531   + caddc 10533   · cmul 10535  cn 11631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-addass 10595  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rrecex 10602  ax-cnre 10603
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7152  df-om 7574  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-nn 11632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator