Mathbox for Steven Nguyen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmulcom Structured version   Visualization version   GIF version

Theorem nnmulcom 39488
 Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmulcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem nnmulcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7142 . . . . 5 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
2 oveq2 7143 . . . . 5 (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1))
31, 2eqeq12d 2814 . . . 4 (𝑥 = 1 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (1 · 𝐵) = (𝐵 · 1)))
43imbi2d 344 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))))
5 oveq1 7142 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
6 oveq2 7143 . . . . 5 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
75, 6eqeq12d 2814 . . . 4 (𝑥 = 𝑦 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝑦 · 𝐵) = (𝐵 · 𝑦)))
87imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦))))
9 oveq1 7142 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
10 oveq2 7143 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1)))
119, 10eqeq12d 2814 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))
1211imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
13 oveq1 7142 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
14 oveq2 7143 . . . . 5 (𝑥 = 𝐴 → (𝐵 · 𝑥) = (𝐵 · 𝐴))
1513, 14eqeq12d 2814 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝐴 · 𝐵) = (𝐵 · 𝐴)))
1615imbi2d 344 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴))))
17 nnmul1com 39487 . . 3 (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))
18 simp3 1135 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝑦 · 𝐵) = (𝐵 · 𝑦))
19173ad2ant2 1131 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (1 · 𝐵) = (𝐵 · 1))
2018, 19oveq12d 7153 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
21 simp1 1133 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℕ)
22 1nn 11638 . . . . . . . 8 1 ∈ ℕ
2322a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℕ)
24 simp2 1134 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℕ)
25 nnadddir 39486 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2621, 23, 24, 25syl3anc 1368 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2724nncnd 11643 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℂ)
2821nncnd 11643 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℂ)
29 1cnd 10627 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℂ)
3027, 28, 29adddid 10656 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
3120, 26, 303eqtr4d 2843 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))
32313exp 1116 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 · 𝐵) = (𝐵 · 𝑦) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
3332a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
344, 8, 12, 16, 17, 33nnind 11645 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴)))
3534imp 410 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  (class class class)co 7135  1c1 10529   + caddc 10531   · cmul 10533  ℕcn 11627 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-addass 10593  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rrecex 10600  ax-cnre 10601 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7563  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-nn 11628 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator