Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmulcom Structured version   Visualization version   GIF version

Theorem nnmulcom 42304
Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmulcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem nnmulcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . . . 5 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
2 oveq2 7354 . . . . 5 (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1))
31, 2eqeq12d 2747 . . . 4 (𝑥 = 1 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (1 · 𝐵) = (𝐵 · 1)))
43imbi2d 340 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))))
5 oveq1 7353 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
6 oveq2 7354 . . . . 5 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
75, 6eqeq12d 2747 . . . 4 (𝑥 = 𝑦 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝑦 · 𝐵) = (𝐵 · 𝑦)))
87imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦))))
9 oveq1 7353 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
10 oveq2 7354 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1)))
119, 10eqeq12d 2747 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))
1211imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
13 oveq1 7353 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
14 oveq2 7354 . . . . 5 (𝑥 = 𝐴 → (𝐵 · 𝑥) = (𝐵 · 𝐴))
1513, 14eqeq12d 2747 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝐴 · 𝐵) = (𝐵 · 𝐴)))
1615imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴))))
17 nnmul1com 42303 . . 3 (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))
18 simp3 1138 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝑦 · 𝐵) = (𝐵 · 𝑦))
19173ad2ant2 1134 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (1 · 𝐵) = (𝐵 · 1))
2018, 19oveq12d 7364 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
21 simp1 1136 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℕ)
22 1nn 12133 . . . . . . . 8 1 ∈ ℕ
2322a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℕ)
24 simp2 1137 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℕ)
25 nnadddir 42302 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2621, 23, 24, 25syl3anc 1373 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2724nncnd 12138 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℂ)
2821nncnd 12138 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℂ)
29 1cnd 11104 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℂ)
3027, 28, 29adddid 11133 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
3120, 26, 303eqtr4d 2776 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))
32313exp 1119 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 · 𝐵) = (𝐵 · 𝑦) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
3332a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
344, 8, 12, 16, 17, 33nnind 12140 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴)))
3534imp 406 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  1c1 11004   + caddc 11006   · cmul 11008  cn 12122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-addass 11068  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rrecex 11075  ax-cnre 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123
This theorem is referenced by:  nn0mulcom  42498  zmulcomlem  42499  zmulcom  42500
  Copyright terms: Public domain W3C validator