Step | Hyp | Ref
| Expression |
1 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵)) |
2 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1)) |
3 | 1, 2 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 1 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (1 · 𝐵) = (𝐵 · 1))) |
4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1)))) |
5 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵)) |
6 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦)) |
7 | 5, 6 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝑦 · 𝐵) = (𝐵 · 𝑦))) |
8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)))) |
9 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵)) |
10 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1))) |
11 | 9, 10 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = (𝑦 + 1) → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))) |
12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))) |
13 | | oveq1 7262 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵)) |
14 | | oveq2 7263 |
. . . . 5
⊢ (𝑥 = 𝐴 → (𝐵 · 𝑥) = (𝐵 · 𝐴)) |
15 | 13, 14 | eqeq12d 2754 |
. . . 4
⊢ (𝑥 = 𝐴 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝐴 · 𝐵) = (𝐵 · 𝐴))) |
16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴)))) |
17 | | nnmul1com 40222 |
. . 3
⊢ (𝐵 ∈ ℕ → (1
· 𝐵) = (𝐵 · 1)) |
18 | | simp3 1136 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝑦 · 𝐵) = (𝐵 · 𝑦)) |
19 | 17 | 3ad2ant2 1132 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (1 · 𝐵) = (𝐵 · 1)) |
20 | 18, 19 | oveq12d 7273 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝐵 · 𝑦) + (𝐵 · 1))) |
21 | | simp1 1134 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℕ) |
22 | | 1nn 11914 |
. . . . . . . 8
⊢ 1 ∈
ℕ |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℕ) |
24 | | simp2 1135 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℕ) |
25 | | nnadddir 40221 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 1 ∈
ℕ ∧ 𝐵 ∈
ℕ) → ((𝑦 + 1)
· 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵))) |
26 | 21, 23, 24, 25 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵))) |
27 | 24 | nncnd 11919 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℂ) |
28 | 21 | nncnd 11919 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℂ) |
29 | | 1cnd 10901 |
. . . . . . 7
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℂ) |
30 | 27, 28, 29 | adddid 10930 |
. . . . . 6
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1))) |
31 | 20, 26, 30 | 3eqtr4d 2788 |
. . . . 5
⊢ ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))) |
32 | 31 | 3exp 1117 |
. . . 4
⊢ (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 · 𝐵) = (𝐵 · 𝑦) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))) |
33 | 32 | a2d 29 |
. . 3
⊢ (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))) |
34 | 4, 8, 12, 16, 17, 33 | nnind 11921 |
. 2
⊢ (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴))) |
35 | 34 | imp 406 |
1
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) |