Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnmulcom Structured version   Visualization version   GIF version

Theorem nnmulcom 40009
Description: Multiplication is commutative for natural numbers. (Contributed by SN, 5-Feb-2024.)
Assertion
Ref Expression
nnmulcom ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))

Proof of Theorem nnmulcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7220 . . . . 5 (𝑥 = 1 → (𝑥 · 𝐵) = (1 · 𝐵))
2 oveq2 7221 . . . . 5 (𝑥 = 1 → (𝐵 · 𝑥) = (𝐵 · 1))
31, 2eqeq12d 2753 . . . 4 (𝑥 = 1 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (1 · 𝐵) = (𝐵 · 1)))
43imbi2d 344 . . 3 (𝑥 = 1 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))))
5 oveq1 7220 . . . . 5 (𝑥 = 𝑦 → (𝑥 · 𝐵) = (𝑦 · 𝐵))
6 oveq2 7221 . . . . 5 (𝑥 = 𝑦 → (𝐵 · 𝑥) = (𝐵 · 𝑦))
75, 6eqeq12d 2753 . . . 4 (𝑥 = 𝑦 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝑦 · 𝐵) = (𝐵 · 𝑦)))
87imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦))))
9 oveq1 7220 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 · 𝐵) = ((𝑦 + 1) · 𝐵))
10 oveq2 7221 . . . . 5 (𝑥 = (𝑦 + 1) → (𝐵 · 𝑥) = (𝐵 · (𝑦 + 1)))
119, 10eqeq12d 2753 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1))))
1211imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
13 oveq1 7220 . . . . 5 (𝑥 = 𝐴 → (𝑥 · 𝐵) = (𝐴 · 𝐵))
14 oveq2 7221 . . . . 5 (𝑥 = 𝐴 → (𝐵 · 𝑥) = (𝐵 · 𝐴))
1513, 14eqeq12d 2753 . . . 4 (𝑥 = 𝐴 → ((𝑥 · 𝐵) = (𝐵 · 𝑥) ↔ (𝐴 · 𝐵) = (𝐵 · 𝐴)))
1615imbi2d 344 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ℕ → (𝑥 · 𝐵) = (𝐵 · 𝑥)) ↔ (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴))))
17 nnmul1com 40008 . . 3 (𝐵 ∈ ℕ → (1 · 𝐵) = (𝐵 · 1))
18 simp3 1140 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝑦 · 𝐵) = (𝐵 · 𝑦))
19173ad2ant2 1136 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (1 · 𝐵) = (𝐵 · 1))
2018, 19oveq12d 7231 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 · 𝐵) + (1 · 𝐵)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
21 simp1 1138 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℕ)
22 1nn 11841 . . . . . . . 8 1 ∈ ℕ
2322a1i 11 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℕ)
24 simp2 1139 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℕ)
25 nnadddir 40007 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2621, 23, 24, 25syl3anc 1373 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = ((𝑦 · 𝐵) + (1 · 𝐵)))
2724nncnd 11846 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝐵 ∈ ℂ)
2821nncnd 11846 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 𝑦 ∈ ℂ)
29 1cnd 10828 . . . . . . 7 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → 1 ∈ ℂ)
3027, 28, 29adddid 10857 . . . . . 6 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 · (𝑦 + 1)) = ((𝐵 · 𝑦) + (𝐵 · 1)))
3120, 26, 303eqtr4d 2787 . . . . 5 ((𝑦 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ (𝑦 · 𝐵) = (𝐵 · 𝑦)) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))
32313exp 1121 . . . 4 (𝑦 ∈ ℕ → (𝐵 ∈ ℕ → ((𝑦 · 𝐵) = (𝐵 · 𝑦) → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
3332a2d 29 . . 3 (𝑦 ∈ ℕ → ((𝐵 ∈ ℕ → (𝑦 · 𝐵) = (𝐵 · 𝑦)) → (𝐵 ∈ ℕ → ((𝑦 + 1) · 𝐵) = (𝐵 · (𝑦 + 1)))))
344, 8, 12, 16, 17, 33nnind 11848 . 2 (𝐴 ∈ ℕ → (𝐵 ∈ ℕ → (𝐴 · 𝐵) = (𝐵 · 𝐴)))
3534imp 410 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) = (𝐵 · 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  (class class class)co 7213  1c1 10730   + caddc 10732   · cmul 10734  cn 11830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-addass 10794  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rrecex 10801  ax-cnre 10802
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-om 7645  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-nn 11831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator