MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numexp0 Structured version   Visualization version   GIF version

Theorem numexp0 16989
Description: Calculate an integer power. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypothesis
Ref Expression
numexp.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
numexp0 (𝐴↑0) = 1

Proof of Theorem numexp0
StepHypRef Expression
1 numexp.1 . . 3 𝐴 ∈ ℕ0
21nn0cni 12400 . 2 𝐴 ∈ ℂ
3 exp0 13974 . 2 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
42, 3ax-mp 5 1 (𝐴↑0) = 1
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7352  cc 11011  0cc0 11013  1c1 11014  0cn0 12388  cexp 13970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-i2m1 11081  ax-rnegex 11084  ax-cnre 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-seq 13911  df-exp 13971
This theorem is referenced by:  decsplit0b  16993  dchrisum0flb  27449  ex-ind-dvds  30443  hgt750lemd  34682  hgt750lem  34685  itcovalt2lem1  48800
  Copyright terms: Public domain W3C validator