Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalt2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for itcovalt2 45975: induction basis. (Contributed by AV, 5-May-2024.) |
Ref | Expression |
---|---|
itcovalt2.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) |
Ref | Expression |
---|---|
itcovalt2lem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12222 | . . . 4 ⊢ ℕ0 ∈ V | |
2 | ovexd 7303 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 𝐶) ∈ V) | |
3 | 2 | rgen 3075 | . . . 4 ⊢ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V |
4 | 1, 3 | pm3.2i 470 | . . 3 ⊢ (ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) |
5 | itcovalt2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) | |
6 | 5 | itcoval0mpt 45964 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
7 | 4, 6 | mp1i 13 | . 2 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
8 | simpr 484 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
9 | 8 | nn0cnd 12278 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ) |
10 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0) | |
11 | 10 | nn0cnd 12278 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ) |
12 | 2nn0 12233 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
13 | 12 | numexp0 16758 | . . . . . . . 8 ⊢ (2↑0) = 1 |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (2↑0) = 1) |
15 | 14 | oveq2d 7284 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = ((𝑛 + 𝐶) · 1)) |
16 | 8, 10 | nn0addcld 12280 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℕ0) |
17 | 16 | nn0cnd 12278 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℂ) |
18 | 17 | mulid1d 10976 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · 1) = (𝑛 + 𝐶)) |
19 | 15, 18 | eqtrd 2779 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = (𝑛 + 𝐶)) |
20 | 9, 11, 19 | mvrraddd 11370 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑0)) − 𝐶) = 𝑛) |
21 | 20 | eqcomd 2745 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (((𝑛 + 𝐶) · (2↑0)) − 𝐶)) |
22 | 21 | mpteq2dva 5178 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
23 | 7, 22 | eqtrd 2779 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 0cc0 10855 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 2c2 12011 ℕ0cn0 12216 ↑cexp 13763 IterCompcitco 45955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-n0 12217 df-z 12303 df-uz 12565 df-seq 13703 df-exp 13764 df-itco 45957 |
This theorem is referenced by: itcovalt2 45975 |
Copyright terms: Public domain | W3C validator |