| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalt2lem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for itcovalt2 48544: induction basis. (Contributed by AV, 5-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalt2.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) |
| Ref | Expression |
|---|---|
| itcovalt2lem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 12516 | . . . 4 ⊢ ℕ0 ∈ V | |
| 2 | ovexd 7449 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 𝐶) ∈ V) | |
| 3 | 2 | rgen 3052 | . . . 4 ⊢ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V |
| 4 | 1, 3 | pm3.2i 470 | . . 3 ⊢ (ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) |
| 5 | itcovalt2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) | |
| 6 | 5 | itcoval0mpt 48533 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
| 7 | 4, 6 | mp1i 13 | . 2 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
| 8 | simpr 484 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
| 9 | 8 | nn0cnd 12573 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ) |
| 10 | simpl 482 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0) | |
| 11 | 10 | nn0cnd 12573 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ) |
| 12 | 2nn0 12527 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
| 13 | 12 | numexp0 17096 | . . . . . . . 8 ⊢ (2↑0) = 1 |
| 14 | 13 | a1i 11 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (2↑0) = 1) |
| 15 | 14 | oveq2d 7430 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = ((𝑛 + 𝐶) · 1)) |
| 16 | 8, 10 | nn0addcld 12575 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℕ0) |
| 17 | 16 | nn0cnd 12573 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℂ) |
| 18 | 17 | mulridd 11261 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · 1) = (𝑛 + 𝐶)) |
| 19 | 15, 18 | eqtrd 2769 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = (𝑛 + 𝐶)) |
| 20 | 9, 11, 19 | mvrraddd 11658 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑0)) − 𝐶) = 𝑛) |
| 21 | 20 | eqcomd 2740 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (((𝑛 + 𝐶) · (2↑0)) − 𝐶)) |
| 22 | 21 | mpteq2dva 5224 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
| 23 | 7, 22 | eqtrd 2769 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3464 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 + caddc 11141 · cmul 11143 − cmin 11475 2c2 12304 ℕ0cn0 12510 ↑cexp 14085 IterCompcitco 48524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-seq 14026 df-exp 14086 df-itco 48526 |
| This theorem is referenced by: itcovalt2 48544 |
| Copyright terms: Public domain | W3C validator |