Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalt2lem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for itcovalt2 46267: induction basis. (Contributed by AV, 5-May-2024.) |
Ref | Expression |
---|---|
itcovalt2.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) |
Ref | Expression |
---|---|
itcovalt2lem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12289 | . . . 4 ⊢ ℕ0 ∈ V | |
2 | ovexd 7342 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 𝐶) ∈ V) | |
3 | 2 | rgen 3064 | . . . 4 ⊢ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V |
4 | 1, 3 | pm3.2i 472 | . . 3 ⊢ (ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) |
5 | itcovalt2.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶)) | |
6 | 5 | itcoval0mpt 46256 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
7 | 4, 6 | mp1i 13 | . 2 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
8 | simpr 486 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0) | |
9 | 8 | nn0cnd 12345 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ) |
10 | simpl 484 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0) | |
11 | 10 | nn0cnd 12345 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ) |
12 | 2nn0 12300 | . . . . . . . . 9 ⊢ 2 ∈ ℕ0 | |
13 | 12 | numexp0 16826 | . . . . . . . 8 ⊢ (2↑0) = 1 |
14 | 13 | a1i 11 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (2↑0) = 1) |
15 | 14 | oveq2d 7323 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = ((𝑛 + 𝐶) · 1)) |
16 | 8, 10 | nn0addcld 12347 | . . . . . . . 8 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℕ0) |
17 | 16 | nn0cnd 12345 | . . . . . . 7 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℂ) |
18 | 17 | mulid1d 11042 | . . . . . 6 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · 1) = (𝑛 + 𝐶)) |
19 | 15, 18 | eqtrd 2776 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = (𝑛 + 𝐶)) |
20 | 9, 11, 19 | mvrraddd 11437 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑0)) − 𝐶) = 𝑛) |
21 | 20 | eqcomd 2742 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (((𝑛 + 𝐶) · (2↑0)) − 𝐶)) |
22 | 21 | mpteq2dva 5181 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
23 | 7, 22 | eqtrd 2776 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 Vcvv 3437 ↦ cmpt 5164 ‘cfv 6458 (class class class)co 7307 0cc0 10921 1c1 10922 + caddc 10924 · cmul 10926 − cmin 11255 2c2 12078 ℕ0cn0 12283 ↑cexp 13832 IterCompcitco 46247 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-seq 13772 df-exp 13833 df-itco 46249 |
This theorem is referenced by: itcovalt2 46267 |
Copyright terms: Public domain | W3C validator |