Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem1 Structured version   Visualization version   GIF version

Theorem itcovalt2lem1 45973
Description: Lemma 1 for itcovalt2 45975: induction basis. (Contributed by AV, 5-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2lem1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
Distinct variable group:   𝐶,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2lem1
StepHypRef Expression
1 nn0ex 12222 . . . 4 0 ∈ V
2 ovexd 7303 . . . . 5 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 𝐶) ∈ V)
32rgen 3075 . . . 4 𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V
41, 3pm3.2i 470 . . 3 (ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V)
5 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
65itcoval0mpt 45964 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
74, 6mp1i 13 . 2 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
8 simpr 484 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
98nn0cnd 12278 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
10 simpl 482 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0)
1110nn0cnd 12278 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
12 2nn0 12233 . . . . . . . . 9 2 ∈ ℕ0
1312numexp0 16758 . . . . . . . 8 (2↑0) = 1
1413a1i 11 . . . . . . 7 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (2↑0) = 1)
1514oveq2d 7284 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = ((𝑛 + 𝐶) · 1))
168, 10nn0addcld 12280 . . . . . . . 8 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℕ0)
1716nn0cnd 12278 . . . . . . 7 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℂ)
1817mulid1d 10976 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · 1) = (𝑛 + 𝐶))
1915, 18eqtrd 2779 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = (𝑛 + 𝐶))
209, 11, 19mvrraddd 11370 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑0)) − 𝐶) = 𝑛)
2120eqcomd 2745 . . 3 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
2221mpteq2dva 5178 . 2 (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0𝑛) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
237, 22eqtrd 2779 1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  Vcvv 3430  cmpt 5161  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  cmin 11188  2c2 12011  0cn0 12216  cexp 13763  IterCompcitco 45955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-seq 13703  df-exp 13764  df-itco 45957
This theorem is referenced by:  itcovalt2  45975
  Copyright terms: Public domain W3C validator