Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2lem1 Structured version   Visualization version   GIF version

Theorem itcovalt2lem1 48525
Description: Lemma 1 for itcovalt2 48527: induction basis. (Contributed by AV, 5-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2lem1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
Distinct variable group:   𝐶,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2lem1
StepHypRef Expression
1 nn0ex 12530 . . . 4 0 ∈ V
2 ovexd 7466 . . . . 5 (𝑛 ∈ ℕ0 → ((2 · 𝑛) + 𝐶) ∈ V)
32rgen 3061 . . . 4 𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V
41, 3pm3.2i 470 . . 3 (ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V)
5 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
65itcoval0mpt 48516 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 ((2 · 𝑛) + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
74, 6mp1i 13 . 2 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
8 simpr 484 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
98nn0cnd 12587 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 ∈ ℂ)
10 simpl 482 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝐶 ∈ ℕ0)
1110nn0cnd 12587 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝐶 ∈ ℂ)
12 2nn0 12541 . . . . . . . . 9 2 ∈ ℕ0
1312numexp0 17110 . . . . . . . 8 (2↑0) = 1
1413a1i 11 . . . . . . 7 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (2↑0) = 1)
1514oveq2d 7447 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = ((𝑛 + 𝐶) · 1))
168, 10nn0addcld 12589 . . . . . . . 8 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℕ0)
1716nn0cnd 12587 . . . . . . 7 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 𝐶) ∈ ℂ)
1817mulridd 11276 . . . . . 6 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · 1) = (𝑛 + 𝐶))
1915, 18eqtrd 2775 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → ((𝑛 + 𝐶) · (2↑0)) = (𝑛 + 𝐶))
209, 11, 19mvrraddd 11673 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (((𝑛 + 𝐶) · (2↑0)) − 𝐶) = 𝑛)
2120eqcomd 2741 . . 3 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
2221mpteq2dva 5248 . 2 (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0𝑛) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
237, 22eqtrd 2775 1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  Vcvv 3478  cmpt 5231  cfv 6563  (class class class)co 7431  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  2c2 12319  0cn0 12524  cexp 14099  IterCompcitco 48507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100  df-itco 48509
This theorem is referenced by:  itcovalt2  48527
  Copyright terms: Public domain W3C validator