Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaid1 Structured version   Visualization version   GIF version

Theorem ofoaid1 43354
Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaid1 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐹f +o (𝐴 × {∅})) = 𝐹)

Proof of Theorem ofoaid1
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐴𝑉)
2 onss 7764 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ On)
3 sstr 3958 . . . . . . . 8 ((ran 𝐹𝐵𝐵 ⊆ On) → ran 𝐹 ⊆ On)
43expcom 413 . . . . . . 7 (𝐵 ⊆ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
52, 4syl 17 . . . . . 6 (𝐵 ∈ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
65anim2d 612 . . . . 5 (𝐵 ∈ On → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On)))
7 df-f 6518 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6518 . . . . 5 (𝐹:𝐴⟶On ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On))
96, 7, 83imtr4g 296 . . . 4 (𝐵 ∈ On → (𝐹:𝐴𝐵𝐹:𝐴⟶On))
10 elmapi 8825 . . . 4 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
119, 10impel 505 . . 3 ((𝐵 ∈ On ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
1211adantll 714 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
13 peano1 7868 . . 3 ∅ ∈ ω
14 fnconstg 6751 . . 3 (∅ ∈ ω → (𝐴 × {∅}) Fn 𝐴)
1513, 14mp1i 13 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
16 simp2 1137 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹:𝐴⟶On)
1716ffnd 6692 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹 Fn 𝐴)
18 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐴 × {∅}) Fn 𝐴)
19 simp1 1136 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐴𝑉)
20 inidm 4193 . . . 4 (𝐴𝐴) = 𝐴
2117, 18, 19, 19, 20offn 7669 . . 3 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐹f +o (𝐴 × {∅})) Fn 𝐴)
2217, 18jca 511 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐹 Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
2322adantr 480 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (𝐹 Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴))
2419adantr 480 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝐴𝑉)
25 simpr 484 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
26 fnfvof 7673 . . . . 5 (((𝐹 Fn 𝐴 ∧ (𝐴 × {∅}) Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → ((𝐹f +o (𝐴 × {∅}))‘𝑎) = ((𝐹𝑎) +o ((𝐴 × {∅})‘𝑎)))
2723, 24, 25, 26syl12anc 836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐹f +o (𝐴 × {∅}))‘𝑎) = ((𝐹𝑎) +o ((𝐴 × {∅})‘𝑎)))
28 fvconst2g 7179 . . . . . 6 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
2913, 25, 28sylancr 587 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
3029oveq2d 7406 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ((𝐴 × {∅})‘𝑎)) = ((𝐹𝑎) +o ∅))
3116ffvelcdmda 7059 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
32 oa0 8483 . . . . 5 ((𝐹𝑎) ∈ On → ((𝐹𝑎) +o ∅) = (𝐹𝑎))
3331, 32syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐹𝑎) +o ∅) = (𝐹𝑎))
3427, 30, 333eqtrd 2769 . . 3 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐹f +o (𝐴 × {∅}))‘𝑎) = (𝐹𝑎))
3521, 17, 34eqfnfvd 7009 . 2 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐹f +o (𝐴 × {∅})) = 𝐹)
361, 12, 15, 35syl3anc 1373 1 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐹f +o (𝐴 × {∅})) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3917  c0 4299  {csn 4592   × cxp 5639  ran crn 5642  Oncon0 6335   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  ωcom 7845   +o coa 8434  m cmap 8802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-oadd 8441  df-map 8804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator