Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaid2 Structured version   Visualization version   GIF version

Theorem ofoaid2 43342
Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaid2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)

Proof of Theorem ofoaid2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpll 766 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐴𝑉)
2 onss 7721 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ On)
3 sstr 3944 . . . . . . . 8 ((ran 𝐹𝐵𝐵 ⊆ On) → ran 𝐹 ⊆ On)
43expcom 413 . . . . . . 7 (𝐵 ⊆ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
52, 4syl 17 . . . . . 6 (𝐵 ∈ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
65anim2d 612 . . . . 5 (𝐵 ∈ On → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On)))
7 df-f 6486 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6486 . . . . 5 (𝐹:𝐴⟶On ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On))
96, 7, 83imtr4g 296 . . . 4 (𝐵 ∈ On → (𝐹:𝐴𝐵𝐹:𝐴⟶On))
10 elmapi 8776 . . . 4 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
119, 10impel 505 . . 3 ((𝐵 ∈ On ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
1211adantll 714 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
13 peano1 7822 . . 3 ∅ ∈ ω
14 fnconstg 6712 . . 3 (∅ ∈ ω → (𝐴 × {∅}) Fn 𝐴)
1513, 14mp1i 13 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
16 simp3 1138 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐴 × {∅}) Fn 𝐴)
17 simp2 1137 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹:𝐴⟶On)
1817ffnd 6653 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹 Fn 𝐴)
19 simp1 1136 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐴𝑉)
20 inidm 4178 . . . 4 (𝐴𝐴) = 𝐴
2116, 18, 19, 19, 20offn 7626 . . 3 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) Fn 𝐴)
2216, 18jca 511 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2322adantr 480 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2419adantr 480 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝐴𝑉)
25 simpr 484 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
26 fnfvof 7630 . . . . 5 ((((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
2723, 24, 25, 26syl12anc 836 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
28 fvconst2g 7138 . . . . . 6 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
2913, 25, 28sylancr 587 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
3029oveq1d 7364 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)) = (∅ +o (𝐹𝑎)))
3117ffvelcdmda 7018 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
32 oa0r 8456 . . . . 5 ((𝐹𝑎) ∈ On → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3331, 32syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3427, 30, 333eqtrd 2768 . . 3 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (𝐹𝑎))
3521, 18, 34eqfnfvd 6968 . 2 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
361, 12, 15, 35syl3anc 1373 1 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  c0 4284  {csn 4577   × cxp 5617  ran crn 5620  Oncon0 6307   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  f cof 7611  ωcom 7799   +o coa 8385  m cmap 8753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-oadd 8392  df-map 8755
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator