Step | Hyp | Ref
| Expression |
1 | | simpll 764 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → 𝐴 ∈ 𝑉) |
2 | | onss 7675 |
. . . . . . 7
⊢ (𝐵 ∈ On → 𝐵 ⊆ On) |
3 | | sstr 3938 |
. . . . . . . 8
⊢ ((ran
𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ On) → ran 𝐹 ⊆ On) |
4 | 3 | expcom 414 |
. . . . . . 7
⊢ (𝐵 ⊆ On → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ On)) |
5 | 2, 4 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ On → (ran 𝐹 ⊆ 𝐵 → ran 𝐹 ⊆ On)) |
6 | 5 | anim2d 612 |
. . . . 5
⊢ (𝐵 ∈ On → ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On))) |
7 | | df-f 6469 |
. . . . 5
⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
8 | | df-f 6469 |
. . . . 5
⊢ (𝐹:𝐴⟶On ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On)) |
9 | 6, 7, 8 | 3imtr4g 295 |
. . . 4
⊢ (𝐵 ∈ On → (𝐹:𝐴⟶𝐵 → 𝐹:𝐴⟶On)) |
10 | | elmapi 8686 |
. . . 4
⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) → 𝐹:𝐴⟶𝐵) |
11 | 9, 10 | impel 506 |
. . 3
⊢ ((𝐵 ∈ On ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → 𝐹:𝐴⟶On) |
12 | 11 | adantll 711 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → 𝐹:𝐴⟶On) |
13 | | peano1 7781 |
. . 3
⊢ ∅
∈ ω |
14 | | fnconstg 6699 |
. . 3
⊢ (∅
∈ ω → (𝐴
× {∅}) Fn 𝐴) |
15 | 13, 14 | mp1i 13 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → (𝐴 × {∅}) Fn 𝐴) |
16 | | simp3 1137 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐴 × {∅}) Fn 𝐴) |
17 | | simp2 1136 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹:𝐴⟶On) |
18 | 17 | ffnd 6638 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹 Fn 𝐴) |
19 | | simp1 1135 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐴 ∈ 𝑉) |
20 | | inidm 4162 |
. . . 4
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
21 | 16, 18, 19, 19, 20 | offn 7587 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f
+o 𝐹) Fn 𝐴) |
22 | 16, 18 | jca 512 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) Fn 𝐴 ∧ 𝐹 Fn 𝐴)) |
23 | 22 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ((𝐴 × {∅}) Fn 𝐴 ∧ 𝐹 Fn 𝐴)) |
24 | 19 | adantr 481 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → 𝐴 ∈ 𝑉) |
25 | | simpr 485 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ 𝐴) |
26 | | fnfvof 7591 |
. . . . 5
⊢ ((((𝐴 × {∅}) Fn 𝐴 ∧ 𝐹 Fn 𝐴) ∧ (𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴)) → (((𝐴 × {∅}) ∘f
+o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹‘𝑎))) |
27 | 23, 24, 25, 26 | syl12anc 834 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (((𝐴 × {∅}) ∘f
+o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹‘𝑎))) |
28 | | fvconst2g 7116 |
. . . . . 6
⊢ ((∅
∈ ω ∧ 𝑎
∈ 𝐴) → ((𝐴 × {∅})‘𝑎) = ∅) |
29 | 13, 25, 28 | sylancr 587 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → ((𝐴 × {∅})‘𝑎) = ∅) |
30 | 29 | oveq1d 7331 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (((𝐴 × {∅})‘𝑎) +o (𝐹‘𝑎)) = (∅ +o (𝐹‘𝑎))) |
31 | 17 | ffvelcdmda 7000 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (𝐹‘𝑎) ∈ On) |
32 | | oa0r 8417 |
. . . . 5
⊢ ((𝐹‘𝑎) ∈ On → (∅ +o
(𝐹‘𝑎)) = (𝐹‘𝑎)) |
33 | 31, 32 | syl 17 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (∅ +o (𝐹‘𝑎)) = (𝐹‘𝑎)) |
34 | 27, 30, 33 | 3eqtrd 2780 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎 ∈ 𝐴) → (((𝐴 × {∅}) ∘f
+o 𝐹)‘𝑎) = (𝐹‘𝑎)) |
35 | 21, 18, 34 | eqfnfvd 6951 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f
+o 𝐹) = 𝐹) |
36 | 1, 12, 15, 35 | syl3anc 1370 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵 ↑m 𝐴)) → ((𝐴 × {∅}) ∘f
+o 𝐹) = 𝐹) |