Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaid2 Structured version   Visualization version   GIF version

Theorem ofoaid2 41276
Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaid2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)

Proof of Theorem ofoaid2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpll 764 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐴𝑉)
2 onss 7675 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ On)
3 sstr 3938 . . . . . . . 8 ((ran 𝐹𝐵𝐵 ⊆ On) → ran 𝐹 ⊆ On)
43expcom 414 . . . . . . 7 (𝐵 ⊆ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
52, 4syl 17 . . . . . 6 (𝐵 ∈ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
65anim2d 612 . . . . 5 (𝐵 ∈ On → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On)))
7 df-f 6469 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6469 . . . . 5 (𝐹:𝐴⟶On ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On))
96, 7, 83imtr4g 295 . . . 4 (𝐵 ∈ On → (𝐹:𝐴𝐵𝐹:𝐴⟶On))
10 elmapi 8686 . . . 4 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
119, 10impel 506 . . 3 ((𝐵 ∈ On ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
1211adantll 711 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
13 peano1 7781 . . 3 ∅ ∈ ω
14 fnconstg 6699 . . 3 (∅ ∈ ω → (𝐴 × {∅}) Fn 𝐴)
1513, 14mp1i 13 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
16 simp3 1137 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐴 × {∅}) Fn 𝐴)
17 simp2 1136 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹:𝐴⟶On)
1817ffnd 6638 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹 Fn 𝐴)
19 simp1 1135 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐴𝑉)
20 inidm 4162 . . . 4 (𝐴𝐴) = 𝐴
2116, 18, 19, 19, 20offn 7587 . . 3 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) Fn 𝐴)
2216, 18jca 512 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2322adantr 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2419adantr 481 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝐴𝑉)
25 simpr 485 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
26 fnfvof 7591 . . . . 5 ((((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
2723, 24, 25, 26syl12anc 834 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
28 fvconst2g 7116 . . . . . 6 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
2913, 25, 28sylancr 587 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
3029oveq1d 7331 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)) = (∅ +o (𝐹𝑎)))
3117ffvelcdmda 7000 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
32 oa0r 8417 . . . . 5 ((𝐹𝑎) ∈ On → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3331, 32syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3427, 30, 333eqtrd 2780 . . 3 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (𝐹𝑎))
3521, 18, 34eqfnfvd 6951 . 2 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
361, 12, 15, 35syl3anc 1370 1 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  wss 3896  c0 4266  {csn 4570   × cxp 5605  ran crn 5608  Oncon0 6288   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  f cof 7572  ωcom 7758   +o coa 8342  m cmap 8664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-oadd 8349  df-map 8666
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator