Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofoaid2 Structured version   Visualization version   GIF version

Theorem ofoaid2 42932
Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025.)
Assertion
Ref Expression
ofoaid2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)

Proof of Theorem ofoaid2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 simpll 765 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐴𝑉)
2 onss 7788 . . . . . . 7 (𝐵 ∈ On → 𝐵 ⊆ On)
3 sstr 3985 . . . . . . . 8 ((ran 𝐹𝐵𝐵 ⊆ On) → ran 𝐹 ⊆ On)
43expcom 412 . . . . . . 7 (𝐵 ⊆ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
52, 4syl 17 . . . . . 6 (𝐵 ∈ On → (ran 𝐹𝐵 → ran 𝐹 ⊆ On))
65anim2d 610 . . . . 5 (𝐵 ∈ On → ((𝐹 Fn 𝐴 ∧ ran 𝐹𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On)))
7 df-f 6553 . . . . 5 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
8 df-f 6553 . . . . 5 (𝐹:𝐴⟶On ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ On))
96, 7, 83imtr4g 295 . . . 4 (𝐵 ∈ On → (𝐹:𝐴𝐵𝐹:𝐴⟶On))
10 elmapi 8868 . . . 4 (𝐹 ∈ (𝐵m 𝐴) → 𝐹:𝐴𝐵)
119, 10impel 504 . . 3 ((𝐵 ∈ On ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
1211adantll 712 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → 𝐹:𝐴⟶On)
13 peano1 7895 . . 3 ∅ ∈ ω
14 fnconstg 6785 . . 3 (∅ ∈ ω → (𝐴 × {∅}) Fn 𝐴)
1513, 14mp1i 13 . 2 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → (𝐴 × {∅}) Fn 𝐴)
16 simp3 1135 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → (𝐴 × {∅}) Fn 𝐴)
17 simp2 1134 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹:𝐴⟶On)
1817ffnd 6724 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐹 Fn 𝐴)
19 simp1 1133 . . . 4 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → 𝐴𝑉)
20 inidm 4217 . . . 4 (𝐴𝐴) = 𝐴
2116, 18, 19, 19, 20offn 7698 . . 3 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) Fn 𝐴)
2216, 18jca 510 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2322adantr 479 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴))
2419adantr 479 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝐴𝑉)
25 simpr 483 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → 𝑎𝐴)
26 fnfvof 7702 . . . . 5 ((((𝐴 × {∅}) Fn 𝐴𝐹 Fn 𝐴) ∧ (𝐴𝑉𝑎𝐴)) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
2723, 24, 25, 26syl12anc 835 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)))
28 fvconst2g 7214 . . . . . 6 ((∅ ∈ ω ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
2913, 25, 28sylancr 585 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → ((𝐴 × {∅})‘𝑎) = ∅)
3029oveq1d 7434 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅})‘𝑎) +o (𝐹𝑎)) = (∅ +o (𝐹𝑎)))
3117ffvelcdmda 7093 . . . . 5 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (𝐹𝑎) ∈ On)
32 oa0r 8559 . . . . 5 ((𝐹𝑎) ∈ On → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3331, 32syl 17 . . . 4 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (∅ +o (𝐹𝑎)) = (𝐹𝑎))
3427, 30, 333eqtrd 2769 . . 3 (((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) ∧ 𝑎𝐴) → (((𝐴 × {∅}) ∘f +o 𝐹)‘𝑎) = (𝐹𝑎))
3521, 18, 34eqfnfvd 7042 . 2 ((𝐴𝑉𝐹:𝐴⟶On ∧ (𝐴 × {∅}) Fn 𝐴) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
361, 12, 15, 35syl3anc 1368 1 (((𝐴𝑉𝐵 ∈ On) ∧ 𝐹 ∈ (𝐵m 𝐴)) → ((𝐴 × {∅}) ∘f +o 𝐹) = 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wss 3944  c0 4322  {csn 4630   × cxp 5676  ran crn 5679  Oncon0 6371   Fn wfn 6544  wf 6545  cfv 6549  (class class class)co 7419  f cof 7683  ωcom 7871   +o coa 8484  m cmap 8845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-oadd 8491  df-map 8847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator