MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnum Structured version   Visualization version   GIF version

Theorem ssnum 9937
Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ssnum ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ssnum
StepHypRef Expression
1 ssdomg 8929 . . 3 (𝐴 ∈ dom card → (𝐵𝐴𝐵𝐴))
21imp 406 . 2 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵𝐴)
3 numdom 9936 . 2 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
42, 3syldan 591 1 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2113  wss 3898   class class class wbr 5093  dom cdm 5619  cdom 8873  cardccrd 9835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-er 8628  df-en 8876  df-dom 8877  df-card 9839
This theorem is referenced by:  onssnum  9938  numacn  9947  dfac12r  10045  infdif  10106  fin23lem22  10225  ttukey2g  10414  smobeth  10484  canthnumlem  10546  gchac  10579  tskurn  10687  lbsextlem4  21100  1stcrestlem  23368  2ndcsep  23375  filssufilg  23827  ptcmplem2  23969  ptcmplem3  23970  poimirlem32  37712  ttac  43153  rn1st  45394
  Copyright terms: Public domain W3C validator