![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssnum | Structured version Visualization version GIF version |
Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ssnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8269 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | imp 397 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ≼ 𝐴) |
3 | numdom 9175 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | |
4 | 2, 3 | syldan 587 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∈ wcel 2166 ⊆ wss 3799 class class class wbr 4874 dom cdm 5343 ≼ cdom 8221 cardccrd 9075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2804 ax-rep 4995 ax-sep 5006 ax-nul 5014 ax-pow 5066 ax-pr 5128 ax-un 7210 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2606 df-eu 2641 df-clab 2813 df-cleq 2819 df-clel 2822 df-nfc 2959 df-ne 3001 df-ral 3123 df-rex 3124 df-reu 3125 df-rmo 3126 df-rab 3127 df-v 3417 df-sbc 3664 df-csb 3759 df-dif 3802 df-un 3804 df-in 3806 df-ss 3813 df-pss 3815 df-nul 4146 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4660 df-int 4699 df-iun 4743 df-br 4875 df-opab 4937 df-mpt 4954 df-tr 4977 df-id 5251 df-eprel 5256 df-po 5264 df-so 5265 df-fr 5302 df-se 5303 df-we 5304 df-xp 5349 df-rel 5350 df-cnv 5351 df-co 5352 df-dm 5353 df-rn 5354 df-res 5355 df-ima 5356 df-pred 5921 df-ord 5967 df-on 5968 df-suc 5970 df-iota 6087 df-fun 6126 df-fn 6127 df-f 6128 df-f1 6129 df-fo 6130 df-f1o 6131 df-fv 6132 df-isom 6133 df-riota 6867 df-wrecs 7673 df-recs 7735 df-er 8010 df-en 8224 df-dom 8225 df-card 9079 |
This theorem is referenced by: onssnum 9177 numacn 9186 dfac12r 9284 infdif 9347 fin23lem22 9465 ttukey2g 9654 smobeth 9724 canthnumlem 9786 gchac 9819 tskurn 9927 lbsextlem4 19523 1stcrestlem 21627 2ndcsep 21634 filssufilg 22086 ptcmplem2 22228 ptcmplem3 22229 poimirlem32 33986 ttac 38447 |
Copyright terms: Public domain | W3C validator |