MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssnum Structured version   Visualization version   GIF version

Theorem ssnum 9459
Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
ssnum ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)

Proof of Theorem ssnum
StepHypRef Expression
1 ssdomg 8549 . . 3 (𝐴 ∈ dom card → (𝐵𝐴𝐵𝐴))
21imp 409 . 2 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵𝐴)
3 numdom 9458 . 2 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
42, 3syldan 593 1 ((𝐴 ∈ dom card ∧ 𝐵𝐴) → 𝐵 ∈ dom card)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2110  wss 3935   class class class wbr 5058  dom cdm 5549  cdom 8501  cardccrd 9358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-wrecs 7941  df-recs 8002  df-er 8283  df-en 8504  df-dom 8505  df-card 9362
This theorem is referenced by:  onssnum  9460  numacn  9469  dfac12r  9566  infdif  9625  fin23lem22  9743  ttukey2g  9932  smobeth  10002  canthnumlem  10064  gchac  10097  tskurn  10205  lbsextlem4  19927  1stcrestlem  22054  2ndcsep  22061  filssufilg  22513  ptcmplem2  22655  ptcmplem3  22656  poimirlem32  34918  ttac  39626
  Copyright terms: Public domain W3C validator