Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssnum | Structured version Visualization version GIF version |
Description: A subset of a numerable set is numerable. (Contributed by Mario Carneiro, 28-Apr-2015.) |
Ref | Expression |
---|---|
ssnum | ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdomg 8861 | . . 3 ⊢ (𝐴 ∈ dom card → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
2 | 1 | imp 407 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ≼ 𝐴) |
3 | numdom 9895 | . 2 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ dom card) | |
4 | 2, 3 | syldan 591 | 1 ⊢ ((𝐴 ∈ dom card ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ dom card) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ⊆ wss 3898 class class class wbr 5092 dom cdm 5620 ≼ cdom 8802 cardccrd 9792 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-er 8569 df-en 8805 df-dom 8806 df-card 9796 |
This theorem is referenced by: onssnum 9897 numacn 9906 dfac12r 10003 infdif 10066 fin23lem22 10184 ttukey2g 10373 smobeth 10443 canthnumlem 10505 gchac 10538 tskurn 10646 lbsextlem4 20529 1stcrestlem 22709 2ndcsep 22716 filssufilg 23168 ptcmplem2 23310 ptcmplem3 23311 poimirlem32 35922 ttac 41129 |
Copyright terms: Public domain | W3C validator |