Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0z | Structured version Visualization version GIF version |
Description: A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0z | ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ssz 12387 | . 2 ⊢ ℕ0 ⊆ ℤ | |
2 | 1 | sseli 3922 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) |
Copyright terms: Public domain | W3C validator |