MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgtrf Structured version   Visualization version   GIF version

Theorem symgtrf 18370
Description: Transpositions are elements of the symmetric group. (Contributed by Stefan O'Rear, 23-Aug-2015.)
Hypotheses
Ref Expression
symgtrf.t 𝑇 = ran (pmTrsp‘𝐷)
symgtrf.g 𝐺 = (SymGrp‘𝐷)
symgtrf.b 𝐵 = (Base‘𝐺)
Assertion
Ref Expression
symgtrf 𝑇𝐵

Proof of Theorem symgtrf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2772 . . . 4 (pmTrsp‘𝐷) = (pmTrsp‘𝐷)
2 symgtrf.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
31, 2pmtrff1o 18364 . . 3 (𝑥𝑇𝑥:𝐷1-1-onto𝐷)
4 symgtrf.g . . . 4 𝐺 = (SymGrp‘𝐷)
5 symgtrf.b . . . 4 𝐵 = (Base‘𝐺)
64, 5elsymgbas2 18282 . . 3 (𝑥𝑇 → (𝑥𝐵𝑥:𝐷1-1-onto𝐷))
73, 6mpbird 249 . 2 (𝑥𝑇𝑥𝐵)
87ssriv 3856 1 𝑇𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  wss 3823  ran crn 5404  1-1-ontowf1o 6184  cfv 6185  Basecbs 16337  SymGrpcsymg 18278  pmTrspcpmtr 18342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-pss 3839  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-1o 7903  df-2o 7904  df-oadd 7907  df-er 8087  df-map 8206  df-en 8305  df-dom 8306  df-sdom 8307  df-fin 8308  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-4 11503  df-5 11504  df-6 11505  df-7 11506  df-8 11507  df-9 11508  df-n0 11706  df-z 11792  df-uz 12057  df-fz 12707  df-struct 16339  df-ndx 16340  df-slot 16341  df-base 16343  df-plusg 16432  df-tset 16438  df-symg 18279  df-pmtr 18343
This theorem is referenced by:  symggen  18371  symgtrinv  18373  pmtrdifellem4  18380  psgnunilem5  18395  psgnunilem5OLD  18396  psgnunilem2  18397  psgnuni  18401  psgneldm2  18406  psgnpmtr  18412  psgnfitr  18419  psgnghm  20438  pmtrodpm  20455  psgndiflemB  20458  mdetralt  20933  mdetunilem7  20943  cyc3genpmlem  30493  cyc3genpm  30494  fzto1st  30723  psgnfzto1st  30725  pgrpgt2nabl  43805
  Copyright terms: Public domain W3C validator