|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > pncans | Structured version Visualization version GIF version | ||
| Description: Cancellation law for surreal subtraction. (Contributed by Scott Fenton, 4-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| pncans | ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | addscom 28000 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) = (𝐵 +s 𝐴)) | |
| 2 | 1 | eqcomd 2742 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐵 +s 𝐴) = (𝐴 +s 𝐵)) | 
| 3 | addscl 28015 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (𝐴 +s 𝐵) ∈ No ) | |
| 4 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐵 ∈ No ) | |
| 5 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → 𝐴 ∈ No ) | |
| 6 | 3, 4, 5 | subaddsd 28102 | . 2 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → (((𝐴 +s 𝐵) -s 𝐵) = 𝐴 ↔ (𝐵 +s 𝐴) = (𝐴 +s 𝐵))) | 
| 7 | 2, 6 | mpbird 257 | 1 ⊢ ((𝐴 ∈ No ∧ 𝐵 ∈ No ) → ((𝐴 +s 𝐵) -s 𝐵) = 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7432 No csur 27685 +s cadds 27993 -s csubs 28053 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-ot 4634 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-1o 8507 df-2o 8508 df-nadd 8705 df-no 27688 df-slt 27689 df-bday 27690 df-sle 27791 df-sslt 27827 df-scut 27829 df-0s 27870 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec 27972 df-norec2 27983 df-adds 27994 df-negs 28054 df-subs 28055 | 
| This theorem is referenced by: sltaddsubd 28122 addsdilem3 28180 addsdilem4 28181 n0scut 28339 n0sbday 28355 n0s0m1 28360 nnzs 28373 elzn0s 28385 addhalfcut 28420 zs12bday 28425 | 
| Copyright terms: Public domain | W3C validator |