MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccl Structured version   Visualization version   GIF version

Theorem reccl 11804
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
reccl ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)

Proof of Theorem reccl
StepHypRef Expression
1 ax-1cn 11086 . 2 1 ∈ ℂ
2 divcl 11803 . 2 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
31, 2mp3an1 1450 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029   / cdiv 11795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796
This theorem is referenced by:  divrec  11813  divrec2  11814  divass  11815  divdir  11822  divneg  11834  recrec  11839  rec11  11840  divdiv32  11850  conjmul  11859  recclzi  11867  reccld  11911  expclzlem  14008  exprec  14028  expdiv  14038  rlimdiv  15571  geoisumr  15803  cndrng  21323  cndrngOLD  21324  divcnOLD  24773  divccn  24780  divccnOLD  24782  divccncf  24815  dvexp3  25898  quotlem  26224  quotcl2  26226  quotdgr  26227  aareccl  26250  logtayllem  26584  logtayl  26585  cxpeq  26683  logrec  26689  dchrisum0lem2a  27444  dchrisum0lem2  27445  mulogsum  27459  pntlemr  27529  axcontlem2  28928  nvmul0or  30612  hvmul0or  30987  h1datomi  31543  nmopleid  32101
  Copyright terms: Public domain W3C validator