MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reccl Structured version   Visualization version   GIF version

Theorem reccl 11640
Description: Closure law for reciprocal. (Contributed by NM, 30-Apr-2005.)
Assertion
Ref Expression
reccl ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)

Proof of Theorem reccl
StepHypRef Expression
1 ax-1cn 10929 . 2 1 ∈ ℂ
2 divcl 11639 . 2 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
31, 2mp3an1 1447 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wne 2943  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by:  divrec  11649  divrec2  11650  divass  11651  divdir  11658  divneg  11667  recrec  11672  rec11  11673  divdiv32  11683  conjmul  11692  recclzi  11700  reccld  11744  expclzlem  13806  exprec  13824  expdiv  13834  rlimdiv  15357  geoisumr  15590  cndrng  20627  divcn  24031  divccn  24036  divccncf  24069  dvexp3  25142  quotlem  25460  quotcl2  25462  quotdgr  25463  aareccl  25486  logtayllem  25814  logtayl  25815  cxpeq  25910  logrec  25913  dchrisum0lem2a  26665  dchrisum0lem2  26666  mulogsum  26680  pntlemr  26750  axcontlem2  27333  nvmul0or  29012  hvmul0or  29387  h1datomi  29943  nmopleid  30501
  Copyright terms: Public domain W3C validator