Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∧ wa 395
∈ wcel 2098 ≠
wne 2932 (class class class)co 7402
ℂcc 11105 0cc0 11107
1c1 11108 / cdiv 11870 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905
ax-6 1963 ax-7 2003 ax-8 2100
ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 |
This theorem depends on definitions:
df-bi 206 df-an 396
df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 |
This theorem is referenced by: divrec
11887 divrec2
11888 divass
11889 divdir
11896 divneg
11905 recrec
11910 rec11
11911 divdiv32
11921 conjmul
11930 recclzi
11938 reccld
11982 expclzlem
14050 exprec
14070 expdiv
14080 rlimdiv
15594 geoisumr
15826 cndrng
21279 divcnOLD
24728 divccn
24735 divccnOLD
24737 divccncf
24770 dvexp3
25854 quotlem
26177 quotcl2
26179 quotdgr
26180 aareccl
26203 logtayllem
26533 logtayl
26534 cxpeq
26632 logrec
26635 dchrisum0lem2a
27390 dchrisum0lem2
27391 mulogsum
27405 pntlemr
27475 axcontlem2
28716 nvmul0or
30397 hvmul0or
30772 h1datomi
31328 nmopleid
31886 |