| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > recsne0 | Structured version Visualization version GIF version | ||
| Description: If a surreal has a reciprocal, then it is non-zero. (Contributed by Scott Fenton, 5-Sep-2025.) |
| Ref | Expression |
|---|---|
| recsne0.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| recsne0.2 | ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) |
| Ref | Expression |
|---|---|
| recsne0 | ⊢ (𝜑 → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recsne0.2 | . . 3 ⊢ (𝜑 → ∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ) | |
| 2 | oveq2 7378 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐴 ·s 𝑥) = (𝐴 ·s 𝑦)) | |
| 3 | 2 | eqeq1d 2731 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝐴 ·s 𝑥) = 1s ↔ (𝐴 ·s 𝑦) = 1s )) |
| 4 | 3 | cbvrexvw 3214 | . . 3 ⊢ (∃𝑥 ∈ No (𝐴 ·s 𝑥) = 1s ↔ ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s ) |
| 5 | 1, 4 | sylib 218 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ No (𝐴 ·s 𝑦) = 1s ) |
| 6 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → (𝐴 ·s 𝑦) = 1s ) | |
| 7 | 1sne0s 27788 | . . . . . 6 ⊢ 1s ≠ 0s | |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → 1s ≠ 0s ) |
| 9 | 6, 8 | eqnetrd 2992 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → (𝐴 ·s 𝑦) ≠ 0s ) |
| 10 | recsne0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → 𝐴 ∈ No ) |
| 12 | simprl 770 | . . . . 5 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → 𝑦 ∈ No ) | |
| 13 | 11, 12 | mulsne0bd 28131 | . . . 4 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → ((𝐴 ·s 𝑦) ≠ 0s ↔ (𝐴 ≠ 0s ∧ 𝑦 ≠ 0s ))) |
| 14 | 9, 13 | mpbid 232 | . . 3 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → (𝐴 ≠ 0s ∧ 𝑦 ≠ 0s )) |
| 15 | 14 | simpld 494 | . 2 ⊢ ((𝜑 ∧ (𝑦 ∈ No ∧ (𝐴 ·s 𝑦) = 1s )) → 𝐴 ≠ 0s ) |
| 16 | 5, 15 | rexlimddv 3140 | 1 ⊢ (𝜑 → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 (class class class)co 7370 No csur 27586 0s c0s 27773 1s c1s 27774 ·s cmuls 28051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-1st 7948 df-2nd 7949 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-1o 8412 df-2o 8413 df-nadd 8608 df-no 27589 df-slt 27590 df-bday 27591 df-sle 27692 df-sslt 27729 df-scut 27731 df-0s 27775 df-1s 27776 df-made 27794 df-old 27795 df-left 27797 df-right 27798 df-norec 27887 df-norec2 27898 df-adds 27909 df-negs 27969 df-subs 27970 df-muls 28052 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |