| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version | ||
| Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24697 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22902 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | ioorebas 13466 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 5 | 3, 4 | sselii 3955 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ⊆ wss 3926 ran crn 5655 ‘cfv 6530 (class class class)co 7403 (,)cioo 13360 topGenctg 17449 TopBasesctb 22881 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-ioo 13364 df-topgen 17455 df-bases 22882 |
| This theorem is referenced by: icccld 24703 icopnfcld 24704 iocmnfcld 24705 zcld 24751 iccntr 24759 reconnlem1 24764 reconnlem2 24765 icoopnst 24885 iocopnst 24886 dvlip 25948 dvlipcn 25949 dvivthlem1 25963 dvne0 25966 lhop2 25970 lhop 25971 dvfsumle 25976 dvfsumleOLD 25977 dvfsumabs 25979 dvfsumlem2 25983 dvfsumlem2OLD 25984 ftc1 25999 dvloglem 26607 advlog 26613 advlogexp 26614 cxpcn3 26708 loglesqrt 26721 lgamgulmlem2 26990 log2sumbnd 27505 dya2iocbrsiga 34253 dya2icobrsiga 34254 poimir 37623 ftc1cnnc 37662 areacirclem1 37678 dvrelog3 42024 aks4d1p1p6 42032 redvmptabs 42350 rfcnpre1 44991 rfcnpre2 45003 ioontr 45488 iocopn 45497 icoopn 45502 islptre 45596 limciccioolb 45598 limcicciooub 45614 limcresiooub 45619 limcresioolb 45620 icccncfext 45864 itgsin0pilem1 45927 itgsbtaddcnst 45959 dirkercncflem2 46081 dirkercncflem3 46082 dirkercncflem4 46083 fourierdlem28 46112 fourierdlem32 46116 fourierdlem33 46117 fourierdlem48 46131 fourierdlem49 46132 fourierdlem56 46139 fourierdlem57 46140 fourierdlem59 46142 fourierdlem60 46143 fourierdlem61 46144 fourierdlem62 46145 fourierdlem68 46151 fourierdlem72 46155 fourierdlem73 46156 fouriersw 46208 iooborel 46328 iooii 48840 i0oii 48842 io1ii 48843 |
| Copyright terms: Public domain | W3C validator |