Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23830 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22024 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13112 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3914 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3883 ran crn 5581 ‘cfv 6418 (class class class)co 7255 (,)cioo 13008 topGenctg 17065 TopBasesctb 22003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-topgen 17071 df-bases 22004 |
This theorem is referenced by: icccld 23836 icopnfcld 23837 iocmnfcld 23838 zcld 23882 iccntr 23890 reconnlem1 23895 reconnlem2 23896 icoopnst 24008 iocopnst 24009 dvlip 25062 dvlipcn 25063 dvivthlem1 25077 dvne0 25080 lhop2 25084 lhop 25085 dvfsumle 25090 dvfsumabs 25092 dvfsumlem2 25096 ftc1 25111 dvloglem 25708 advlog 25714 advlogexp 25715 cxpcn3 25806 loglesqrt 25816 lgamgulmlem2 26084 log2sumbnd 26597 dya2iocbrsiga 32142 dya2icobrsiga 32143 poimir 35737 ftc1cnnc 35776 areacirclem1 35792 dvrelog3 40001 aks4d1p1p6 40009 rfcnpre1 42451 rfcnpre2 42463 ioontr 42939 iocopn 42948 icoopn 42953 islptre 43050 limciccioolb 43052 limcicciooub 43068 limcresiooub 43073 limcresioolb 43074 icccncfext 43318 itgsin0pilem1 43381 itgsbtaddcnst 43413 dirkercncflem2 43535 dirkercncflem3 43536 dirkercncflem4 43537 fourierdlem28 43566 fourierdlem32 43570 fourierdlem33 43571 fourierdlem48 43585 fourierdlem49 43586 fourierdlem56 43593 fourierdlem57 43594 fourierdlem59 43596 fourierdlem60 43597 fourierdlem61 43598 fourierdlem62 43599 fourierdlem68 43605 fourierdlem72 43609 fourierdlem73 43610 fouriersw 43662 iooborel 43780 iooii 46099 i0oii 46101 io1ii 46102 |
Copyright terms: Public domain | W3C validator |