![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24587 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22779 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13424 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3971 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ⊆ wss 3940 ran crn 5667 ‘cfv 6533 (class class class)co 7401 (,)cioo 13320 topGenctg 17379 TopBasesctb 22758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-sup 9432 df-inf 9433 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-q 12929 df-ioo 13324 df-topgen 17385 df-bases 22759 |
This theorem is referenced by: icccld 24593 icopnfcld 24594 iocmnfcld 24595 zcld 24639 iccntr 24647 reconnlem1 24652 reconnlem2 24653 icoopnst 24773 iocopnst 24774 dvlip 25836 dvlipcn 25837 dvivthlem1 25851 dvne0 25854 lhop2 25858 lhop 25859 dvfsumle 25864 dvfsumleOLD 25865 dvfsumabs 25867 dvfsumlem2 25871 dvfsumlem2OLD 25872 ftc1 25887 dvloglem 26486 advlog 26492 advlogexp 26493 cxpcn3 26587 loglesqrt 26597 lgamgulmlem2 26866 log2sumbnd 27381 dya2iocbrsiga 33729 dya2icobrsiga 33730 poimir 36977 ftc1cnnc 37016 areacirclem1 37032 dvrelog3 41389 aks4d1p1p6 41397 rfcnpre1 44158 rfcnpre2 44170 ioontr 44675 iocopn 44684 icoopn 44689 islptre 44786 limciccioolb 44788 limcicciooub 44804 limcresiooub 44809 limcresioolb 44810 icccncfext 45054 itgsin0pilem1 45117 itgsbtaddcnst 45149 dirkercncflem2 45271 dirkercncflem3 45272 dirkercncflem4 45273 fourierdlem28 45302 fourierdlem32 45306 fourierdlem33 45307 fourierdlem48 45321 fourierdlem49 45322 fourierdlem56 45329 fourierdlem57 45330 fourierdlem59 45332 fourierdlem60 45333 fourierdlem61 45334 fourierdlem62 45335 fourierdlem68 45341 fourierdlem72 45345 fourierdlem73 45346 fouriersw 45398 iooborel 45518 iooii 47704 i0oii 47706 io1ii 47707 |
Copyright terms: Public domain | W3C validator |