![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24802 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22994 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13511 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 4005 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ⊆ wss 3976 ran crn 5701 ‘cfv 6573 (class class class)co 7448 (,)cioo 13407 topGenctg 17497 TopBasesctb 22973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-ioo 13411 df-topgen 17503 df-bases 22974 |
This theorem is referenced by: icccld 24808 icopnfcld 24809 iocmnfcld 24810 zcld 24854 iccntr 24862 reconnlem1 24867 reconnlem2 24868 icoopnst 24988 iocopnst 24989 dvlip 26052 dvlipcn 26053 dvivthlem1 26067 dvne0 26070 lhop2 26074 lhop 26075 dvfsumle 26080 dvfsumleOLD 26081 dvfsumabs 26083 dvfsumlem2 26087 dvfsumlem2OLD 26088 ftc1 26103 dvloglem 26708 advlog 26714 advlogexp 26715 cxpcn3 26809 loglesqrt 26822 lgamgulmlem2 27091 log2sumbnd 27606 dya2iocbrsiga 34240 dya2icobrsiga 34241 poimir 37613 ftc1cnnc 37652 areacirclem1 37668 dvrelog3 42022 aks4d1p1p6 42030 rfcnpre1 44919 rfcnpre2 44931 ioontr 45429 iocopn 45438 icoopn 45443 islptre 45540 limciccioolb 45542 limcicciooub 45558 limcresiooub 45563 limcresioolb 45564 icccncfext 45808 itgsin0pilem1 45871 itgsbtaddcnst 45903 dirkercncflem2 46025 dirkercncflem3 46026 dirkercncflem4 46027 fourierdlem28 46056 fourierdlem32 46060 fourierdlem33 46061 fourierdlem48 46075 fourierdlem49 46076 fourierdlem56 46083 fourierdlem57 46084 fourierdlem59 46086 fourierdlem60 46087 fourierdlem61 46088 fourierdlem62 46089 fourierdlem68 46095 fourierdlem72 46099 fourierdlem73 46100 fouriersw 46152 iooborel 46272 iooii 48597 i0oii 48599 io1ii 48600 |
Copyright terms: Public domain | W3C validator |