Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23914 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22106 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13174 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3923 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2110 ⊆ wss 3892 ran crn 5590 ‘cfv 6431 (class class class)co 7269 (,)cioo 13070 topGenctg 17138 TopBasesctb 22085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 ax-cnex 10920 ax-resscn 10921 ax-1cn 10922 ax-icn 10923 ax-addcl 10924 ax-addrcl 10925 ax-mulcl 10926 ax-mulrcl 10927 ax-mulcom 10928 ax-addass 10929 ax-mulass 10930 ax-distr 10931 ax-i2m1 10932 ax-1ne0 10933 ax-1rid 10934 ax-rnegex 10935 ax-rrecex 10936 ax-cnre 10937 ax-pre-lttri 10938 ax-pre-lttrn 10939 ax-pre-ltadd 10940 ax-pre-mulgt0 10941 ax-pre-sup 10942 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-tp 4572 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6200 df-ord 6267 df-on 6268 df-lim 6269 df-suc 6270 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7702 df-1st 7818 df-2nd 7819 df-frecs 8082 df-wrecs 8113 df-recs 8187 df-rdg 8226 df-er 8473 df-en 8709 df-dom 8710 df-sdom 8711 df-sup 9171 df-inf 9172 df-pnf 11004 df-mnf 11005 df-xr 11006 df-ltxr 11007 df-le 11008 df-sub 11199 df-neg 11200 df-div 11625 df-nn 11966 df-n0 12226 df-z 12312 df-uz 12574 df-q 12680 df-ioo 13074 df-topgen 17144 df-bases 22086 |
This theorem is referenced by: icccld 23920 icopnfcld 23921 iocmnfcld 23922 zcld 23966 iccntr 23974 reconnlem1 23979 reconnlem2 23980 icoopnst 24092 iocopnst 24093 dvlip 25147 dvlipcn 25148 dvivthlem1 25162 dvne0 25165 lhop2 25169 lhop 25170 dvfsumle 25175 dvfsumabs 25177 dvfsumlem2 25181 ftc1 25196 dvloglem 25793 advlog 25799 advlogexp 25800 cxpcn3 25891 loglesqrt 25901 lgamgulmlem2 26169 log2sumbnd 26682 dya2iocbrsiga 32230 dya2icobrsiga 32231 poimir 35798 ftc1cnnc 35837 areacirclem1 35853 dvrelog3 40062 aks4d1p1p6 40070 rfcnpre1 42524 rfcnpre2 42536 ioontr 43012 iocopn 43021 icoopn 43026 islptre 43123 limciccioolb 43125 limcicciooub 43141 limcresiooub 43146 limcresioolb 43147 icccncfext 43391 itgsin0pilem1 43454 itgsbtaddcnst 43486 dirkercncflem2 43608 dirkercncflem3 43609 dirkercncflem4 43610 fourierdlem28 43639 fourierdlem32 43643 fourierdlem33 43644 fourierdlem48 43658 fourierdlem49 43659 fourierdlem56 43666 fourierdlem57 43667 fourierdlem59 43669 fourierdlem60 43670 fourierdlem61 43671 fourierdlem62 43672 fourierdlem68 43678 fourierdlem72 43682 fourierdlem73 43683 fouriersw 43735 iooborel 43853 iooii 46172 i0oii 46174 io1ii 46175 |
Copyright terms: Public domain | W3C validator |