Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 23924 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22116 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13183 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3918 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ⊆ wss 3887 ran crn 5590 ‘cfv 6433 (class class class)co 7275 (,)cioo 13079 topGenctg 17148 TopBasesctb 22095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-ioo 13083 df-topgen 17154 df-bases 22096 |
This theorem is referenced by: icccld 23930 icopnfcld 23931 iocmnfcld 23932 zcld 23976 iccntr 23984 reconnlem1 23989 reconnlem2 23990 icoopnst 24102 iocopnst 24103 dvlip 25157 dvlipcn 25158 dvivthlem1 25172 dvne0 25175 lhop2 25179 lhop 25180 dvfsumle 25185 dvfsumabs 25187 dvfsumlem2 25191 ftc1 25206 dvloglem 25803 advlog 25809 advlogexp 25810 cxpcn3 25901 loglesqrt 25911 lgamgulmlem2 26179 log2sumbnd 26692 dya2iocbrsiga 32242 dya2icobrsiga 32243 poimir 35810 ftc1cnnc 35849 areacirclem1 35865 dvrelog3 40073 aks4d1p1p6 40081 rfcnpre1 42562 rfcnpre2 42574 ioontr 43049 iocopn 43058 icoopn 43063 islptre 43160 limciccioolb 43162 limcicciooub 43178 limcresiooub 43183 limcresioolb 43184 icccncfext 43428 itgsin0pilem1 43491 itgsbtaddcnst 43523 dirkercncflem2 43645 dirkercncflem3 43646 dirkercncflem4 43647 fourierdlem28 43676 fourierdlem32 43680 fourierdlem33 43681 fourierdlem48 43695 fourierdlem49 43696 fourierdlem56 43703 fourierdlem57 43704 fourierdlem59 43706 fourierdlem60 43707 fourierdlem61 43708 fourierdlem62 43709 fourierdlem68 43715 fourierdlem72 43719 fourierdlem73 43720 fouriersw 43772 iooborel 43890 iooii 46211 i0oii 46213 io1ii 46214 |
Copyright terms: Public domain | W3C validator |