| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version | ||
| Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24646 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22851 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | ioorebas 13354 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 5 | 3, 4 | sselii 3932 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3903 ran crn 5620 ‘cfv 6482 (class class class)co 7349 (,)cioo 13248 topGenctg 17341 TopBasesctb 22830 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 df-q 12850 df-ioo 13252 df-topgen 17347 df-bases 22831 |
| This theorem is referenced by: icccld 24652 icopnfcld 24653 iocmnfcld 24654 zcld 24700 iccntr 24708 reconnlem1 24713 reconnlem2 24714 icoopnst 24834 iocopnst 24835 dvlip 25896 dvlipcn 25897 dvivthlem1 25911 dvne0 25914 lhop2 25918 lhop 25919 dvfsumle 25924 dvfsumleOLD 25925 dvfsumabs 25927 dvfsumlem2 25931 dvfsumlem2OLD 25932 ftc1 25947 dvloglem 26555 advlog 26561 advlogexp 26562 cxpcn3 26656 loglesqrt 26669 lgamgulmlem2 26938 log2sumbnd 27453 dya2iocbrsiga 34243 dya2icobrsiga 34244 poimir 37633 ftc1cnnc 37672 areacirclem1 37688 dvrelog3 42038 aks4d1p1p6 42046 redvmptabs 42333 rfcnpre1 44997 rfcnpre2 45009 ioontr 45492 iocopn 45501 icoopn 45506 islptre 45600 limciccioolb 45602 limcicciooub 45618 limcresiooub 45623 limcresioolb 45624 icccncfext 45868 itgsin0pilem1 45931 itgsbtaddcnst 45963 dirkercncflem2 46085 dirkercncflem3 46086 dirkercncflem4 46087 fourierdlem28 46116 fourierdlem32 46120 fourierdlem33 46121 fourierdlem48 46135 fourierdlem49 46136 fourierdlem56 46143 fourierdlem57 46144 fourierdlem59 46146 fourierdlem60 46147 fourierdlem61 46148 fourierdlem62 46149 fourierdlem68 46155 fourierdlem72 46159 fourierdlem73 46160 fouriersw 46212 iooborel 46332 iooii 48902 i0oii 48904 io1ii 48905 |
| Copyright terms: Public domain | W3C validator |