MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iooretop Structured version   Visualization version   GIF version

Theorem iooretop 23929
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.)
Assertion
Ref Expression
iooretop (𝐴(,)𝐵) ∈ (topGen‘ran (,))

Proof of Theorem iooretop
StepHypRef Expression
1 retopbas 23924 . . 3 ran (,) ∈ TopBases
2 bastg 22116 . . 3 (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,)))
31, 2ax-mp 5 . 2 ran (,) ⊆ (topGen‘ran (,))
4 ioorebas 13183 . 2 (𝐴(,)𝐵) ∈ ran (,)
53, 4sselii 3918 1 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wss 3887  ran crn 5590  cfv 6433  (class class class)co 7275  (,)cioo 13079  topGenctg 17148  TopBasesctb 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ioo 13083  df-topgen 17154  df-bases 22096
This theorem is referenced by:  icccld  23930  icopnfcld  23931  iocmnfcld  23932  zcld  23976  iccntr  23984  reconnlem1  23989  reconnlem2  23990  icoopnst  24102  iocopnst  24103  dvlip  25157  dvlipcn  25158  dvivthlem1  25172  dvne0  25175  lhop2  25179  lhop  25180  dvfsumle  25185  dvfsumabs  25187  dvfsumlem2  25191  ftc1  25206  dvloglem  25803  advlog  25809  advlogexp  25810  cxpcn3  25901  loglesqrt  25911  lgamgulmlem2  26179  log2sumbnd  26692  dya2iocbrsiga  32242  dya2icobrsiga  32243  poimir  35810  ftc1cnnc  35849  areacirclem1  35865  dvrelog3  40073  aks4d1p1p6  40081  rfcnpre1  42562  rfcnpre2  42574  ioontr  43049  iocopn  43058  icoopn  43063  islptre  43160  limciccioolb  43162  limcicciooub  43178  limcresiooub  43183  limcresioolb  43184  icccncfext  43428  itgsin0pilem1  43491  itgsbtaddcnst  43523  dirkercncflem2  43645  dirkercncflem3  43646  dirkercncflem4  43647  fourierdlem28  43676  fourierdlem32  43680  fourierdlem33  43681  fourierdlem48  43695  fourierdlem49  43696  fourierdlem56  43703  fourierdlem57  43704  fourierdlem59  43706  fourierdlem60  43707  fourierdlem61  43708  fourierdlem62  43709  fourierdlem68  43715  fourierdlem72  43719  fourierdlem73  43720  fouriersw  43772  iooborel  43890  iooii  46211  i0oii  46213  io1ii  46214
  Copyright terms: Public domain W3C validator