| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version | ||
| Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24655 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22860 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | ioorebas 13419 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 5 | 3, 4 | sselii 3946 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 ran crn 5642 ‘cfv 6514 (class class class)co 7390 (,)cioo 13313 topGenctg 17407 TopBasesctb 22839 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 df-topgen 17413 df-bases 22840 |
| This theorem is referenced by: icccld 24661 icopnfcld 24662 iocmnfcld 24663 zcld 24709 iccntr 24717 reconnlem1 24722 reconnlem2 24723 icoopnst 24843 iocopnst 24844 dvlip 25905 dvlipcn 25906 dvivthlem1 25920 dvne0 25923 lhop2 25927 lhop 25928 dvfsumle 25933 dvfsumleOLD 25934 dvfsumabs 25936 dvfsumlem2 25940 dvfsumlem2OLD 25941 ftc1 25956 dvloglem 26564 advlog 26570 advlogexp 26571 cxpcn3 26665 loglesqrt 26678 lgamgulmlem2 26947 log2sumbnd 27462 dya2iocbrsiga 34273 dya2icobrsiga 34274 poimir 37654 ftc1cnnc 37693 areacirclem1 37709 dvrelog3 42060 aks4d1p1p6 42068 redvmptabs 42355 rfcnpre1 45020 rfcnpre2 45032 ioontr 45516 iocopn 45525 icoopn 45530 islptre 45624 limciccioolb 45626 limcicciooub 45642 limcresiooub 45647 limcresioolb 45648 icccncfext 45892 itgsin0pilem1 45955 itgsbtaddcnst 45987 dirkercncflem2 46109 dirkercncflem3 46110 dirkercncflem4 46111 fourierdlem28 46140 fourierdlem32 46144 fourierdlem33 46145 fourierdlem48 46159 fourierdlem49 46160 fourierdlem56 46167 fourierdlem57 46168 fourierdlem59 46170 fourierdlem60 46171 fourierdlem61 46172 fourierdlem62 46173 fourierdlem68 46179 fourierdlem72 46183 fourierdlem73 46184 fouriersw 46236 iooborel 46356 iooii 48910 i0oii 48912 io1ii 48913 |
| Copyright terms: Public domain | W3C validator |