![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version |
Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
Ref | Expression |
---|---|
iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | retopbas 24796 | . . 3 ⊢ ran (,) ∈ TopBases | |
2 | bastg 22988 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
4 | ioorebas 13487 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
5 | 3, 4 | sselii 3991 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ⊆ wss 3962 ran crn 5689 ‘cfv 6562 (class class class)co 7430 (,)cioo 13383 topGenctg 17483 TopBasesctb 22967 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-ioo 13387 df-topgen 17489 df-bases 22968 |
This theorem is referenced by: icccld 24802 icopnfcld 24803 iocmnfcld 24804 zcld 24848 iccntr 24856 reconnlem1 24861 reconnlem2 24862 icoopnst 24982 iocopnst 24983 dvlip 26046 dvlipcn 26047 dvivthlem1 26061 dvne0 26064 lhop2 26068 lhop 26069 dvfsumle 26074 dvfsumleOLD 26075 dvfsumabs 26077 dvfsumlem2 26081 dvfsumlem2OLD 26082 ftc1 26097 dvloglem 26704 advlog 26710 advlogexp 26711 cxpcn3 26805 loglesqrt 26818 lgamgulmlem2 27087 log2sumbnd 27602 dya2iocbrsiga 34256 dya2icobrsiga 34257 poimir 37639 ftc1cnnc 37678 areacirclem1 37694 dvrelog3 42046 aks4d1p1p6 42054 redvmptabs 42368 rfcnpre1 44956 rfcnpre2 44968 ioontr 45463 iocopn 45472 icoopn 45477 islptre 45574 limciccioolb 45576 limcicciooub 45592 limcresiooub 45597 limcresioolb 45598 icccncfext 45842 itgsin0pilem1 45905 itgsbtaddcnst 45937 dirkercncflem2 46059 dirkercncflem3 46060 dirkercncflem4 46061 fourierdlem28 46090 fourierdlem32 46094 fourierdlem33 46095 fourierdlem48 46109 fourierdlem49 46110 fourierdlem56 46117 fourierdlem57 46118 fourierdlem59 46120 fourierdlem60 46121 fourierdlem61 46122 fourierdlem62 46123 fourierdlem68 46129 fourierdlem72 46133 fourierdlem73 46134 fouriersw 46186 iooborel 46306 iooii 48713 i0oii 48715 io1ii 48716 |
Copyright terms: Public domain | W3C validator |