| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iooretop | Structured version Visualization version GIF version | ||
| Description: Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) |
| Ref | Expression |
|---|---|
| iooretop | ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | retopbas 24648 | . . 3 ⊢ ran (,) ∈ TopBases | |
| 2 | bastg 22853 | . . 3 ⊢ (ran (,) ∈ TopBases → ran (,) ⊆ (topGen‘ran (,))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ran (,) ⊆ (topGen‘ran (,)) |
| 4 | ioorebas 13412 | . 2 ⊢ (𝐴(,)𝐵) ∈ ran (,) | |
| 5 | 3, 4 | sselii 3943 | 1 ⊢ (𝐴(,)𝐵) ∈ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3914 ran crn 5639 ‘cfv 6511 (class class class)co 7387 (,)cioo 13306 topGenctg 17400 TopBasesctb 22832 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ioo 13310 df-topgen 17406 df-bases 22833 |
| This theorem is referenced by: icccld 24654 icopnfcld 24655 iocmnfcld 24656 zcld 24702 iccntr 24710 reconnlem1 24715 reconnlem2 24716 icoopnst 24836 iocopnst 24837 dvlip 25898 dvlipcn 25899 dvivthlem1 25913 dvne0 25916 lhop2 25920 lhop 25921 dvfsumle 25926 dvfsumleOLD 25927 dvfsumabs 25929 dvfsumlem2 25933 dvfsumlem2OLD 25934 ftc1 25949 dvloglem 26557 advlog 26563 advlogexp 26564 cxpcn3 26658 loglesqrt 26671 lgamgulmlem2 26940 log2sumbnd 27455 dya2iocbrsiga 34266 dya2icobrsiga 34267 poimir 37647 ftc1cnnc 37686 areacirclem1 37702 dvrelog3 42053 aks4d1p1p6 42061 redvmptabs 42348 rfcnpre1 45013 rfcnpre2 45025 ioontr 45509 iocopn 45518 icoopn 45523 islptre 45617 limciccioolb 45619 limcicciooub 45635 limcresiooub 45640 limcresioolb 45641 icccncfext 45885 itgsin0pilem1 45948 itgsbtaddcnst 45980 dirkercncflem2 46102 dirkercncflem3 46103 dirkercncflem4 46104 fourierdlem28 46133 fourierdlem32 46137 fourierdlem33 46138 fourierdlem48 46152 fourierdlem49 46153 fourierdlem56 46160 fourierdlem57 46161 fourierdlem59 46163 fourierdlem60 46164 fourierdlem61 46165 fourierdlem62 46166 fourierdlem68 46172 fourierdlem72 46176 fourierdlem73 46177 fouriersw 46229 iooborel 46349 iooii 48906 i0oii 48908 io1ii 48909 |
| Copyright terms: Public domain | W3C validator |