Step | Hyp | Ref
| Expression |
1 | | reex 11197 |
. . . . . . 7
β’ β
β V |
2 | | rpssre 12977 |
. . . . . . 7
β’
β+ β β |
3 | 1, 2 | ssexi 5321 |
. . . . . 6
β’
β+ β V |
4 | 3 | a1i 11 |
. . . . 5
β’ (β€
β β+ β V) |
5 | | fzfid 13934 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (1...(ββπ₯)) β Fin) |
6 | | elfznn 13526 |
. . . . . . . . . . 11
β’ (π β
(1...(ββπ₯))
β π β
β) |
7 | 6 | adantl 482 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β β) |
8 | | mucl 26634 |
. . . . . . . . . 10
β’ (π β β β
(ΞΌβπ) β
β€) |
9 | 7, 8 | syl 17 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (ΞΌβπ) β
β€) |
10 | 9 | zred 12662 |
. . . . . . . 8
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (ΞΌβπ) β
β) |
11 | 10 | recnd 11238 |
. . . . . . 7
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (ΞΌβπ) β
β) |
12 | | fzfid 13934 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(1...(ββ(π₯ /
π))) β
Fin) |
13 | | elfznn 13526 |
. . . . . . . . . . . . . . 15
β’ (π β
(1...(ββ(π₯ /
π))) β π β
β) |
14 | 13 | adantl 482 |
. . . . . . . . . . . . . 14
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β π β β) |
15 | 14 | nnrpd 13010 |
. . . . . . . . . . . . 13
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β π β β+) |
16 | 15 | relogcld 26122 |
. . . . . . . . . . . 12
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β (logβπ) β β) |
17 | 16 | resqcld 14086 |
. . . . . . . . . . 11
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β ((logβπ)β2) β β) |
18 | 12, 17 | fsumrecl 15676 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) β
β) |
19 | | simplr 767 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π₯ β β+) |
20 | 18, 19 | rerpdivcld 13043 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β β) |
21 | 20 | recnd 11238 |
. . . . . . . 8
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β β) |
22 | | selberglem1.t |
. . . . . . . . . 10
β’ π = ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π) |
23 | | simpr 485 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β β+) β π₯ β β+) |
24 | 6 | nnrpd 13010 |
. . . . . . . . . . . . . . 15
β’ (π β
(1...(ββπ₯))
β π β
β+) |
25 | | rpdivcl 12995 |
. . . . . . . . . . . . . . 15
β’ ((π₯ β β+
β§ π β
β+) β (π₯ / π) β
β+) |
26 | 23, 24, 25 | syl2an 596 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ / π) β
β+) |
27 | 26 | relogcld 26122 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (logβ(π₯ / π)) β β) |
28 | 27 | resqcld 14086 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((logβ(π₯ / π))β2) β β) |
29 | | 2re 12282 |
. . . . . . . . . . . . 13
β’ 2 β
β |
30 | | remulcl 11191 |
. . . . . . . . . . . . . 14
β’ ((2
β β β§ (logβ(π₯ / π)) β β) β (2 Β·
(logβ(π₯ / π))) β
β) |
31 | 29, 27, 30 | sylancr 587 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (2 Β·
(logβ(π₯ / π))) β
β) |
32 | | resubcl 11520 |
. . . . . . . . . . . . 13
β’ ((2
β β β§ (2 Β· (logβ(π₯ / π))) β β) β (2 β (2
Β· (logβ(π₯ /
π)))) β
β) |
33 | 29, 31, 32 | sylancr 587 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (2 β (2
Β· (logβ(π₯ /
π)))) β
β) |
34 | 28, 33 | readdcld 11239 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) β
β) |
35 | 34, 7 | nndivred 12262 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π) β β) |
36 | 22, 35 | eqeltrid 2837 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β β) |
37 | 36 | recnd 11238 |
. . . . . . . 8
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β β) |
38 | 21, 37 | subcld 11567 |
. . . . . . 7
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π) β β) |
39 | 11, 38 | mulcld 11230 |
. . . . . 6
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) β β) |
40 | 5, 39 | fsumcl 15675 |
. . . . 5
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) β β) |
41 | 11, 37 | mulcld 11230 |
. . . . . . 7
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· π) β β) |
42 | 5, 41 | fsumcl 15675 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β β) |
43 | | 2cn 12283 |
. . . . . . 7
β’ 2 β
β |
44 | | relogcl 26075 |
. . . . . . . . 9
β’ (π₯ β β+
β (logβπ₯) β
β) |
45 | 44 | adantl 482 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β (logβπ₯) β β) |
46 | 45 | recnd 11238 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (logβπ₯) β β) |
47 | | mulcl 11190 |
. . . . . . 7
β’ ((2
β β β§ (logβπ₯) β β) β (2 Β·
(logβπ₯)) β
β) |
48 | 43, 46, 47 | sylancr 587 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (2 Β· (logβπ₯)) β β) |
49 | 42, 48 | subcld 11567 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))) β
β) |
50 | | eqidd 2733 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) = (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)))) |
51 | | eqidd 2733 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) |
52 | 4, 40, 49, 50, 51 | offval2 7686 |
. . . 4
β’ (β€
β ((π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) βf + (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) + (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))))) |
53 | 40, 42, 48 | addsubassd 11587 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π)) β (2 Β· (logβπ₯))) = (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) |
54 | | rpcnne0 12988 |
. . . . . . . . . . 11
β’ (π₯ β β+
β (π₯ β β
β§ π₯ β
0)) |
55 | 54 | adantl 482 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β β+) β (π₯ β β β§ π₯ β 0)) |
56 | 55 | simpld 495 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β π₯ β β) |
57 | 10 | adantr 481 |
. . . . . . . . . . . 12
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β (ΞΌβπ) β β) |
58 | 57, 17 | remulcld 11240 |
. . . . . . . . . . 11
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β ((ΞΌβπ) Β· ((logβπ)β2)) β β) |
59 | 12, 58 | fsumrecl 15676 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β Ξ£π β
(1...(ββ(π₯ /
π)))((ΞΌβπ) Β· ((logβπ)β2)) β
β) |
60 | 59 | recnd 11238 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β Ξ£π β
(1...(ββ(π₯ /
π)))((ΞΌβπ) Β· ((logβπ)β2)) β
β) |
61 | 55 | simprd 496 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β π₯ β 0) |
62 | 5, 56, 60, 61 | fsumdivc 15728 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) = Ξ£π β (1...(ββπ₯))(Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯)) |
63 | 17 | recnd 11238 |
. . . . . . . . . . . 12
β’
((((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β§ π β (1...(ββ(π₯ / π)))) β ((logβπ)β2) β β) |
64 | 12, 63 | fsumcl 15675 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) β
β) |
65 | 55 | adantr 481 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ β β β§ π₯ β 0)) |
66 | | divass 11886 |
. . . . . . . . . . 11
β’
(((ΞΌβπ)
β β β§ Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) β β β§ (π₯ β β β§ π₯ β 0)) β
(((ΞΌβπ) Β·
Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2)) / π₯) = ((ΞΌβπ) Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯))) |
67 | 11, 64, 65, 66 | syl3anc 1371 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((ΞΌβπ) Β· Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2)) / π₯) = ((ΞΌβπ) Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯))) |
68 | 12, 11, 63 | fsummulc2 15726 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2)) = Ξ£π β
(1...(ββ(π₯ /
π)))((ΞΌβπ) Β· ((logβπ)β2))) |
69 | 68 | oveq1d 7420 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((ΞΌβπ) Β· Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2)) / π₯) = (Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯)) |
70 | 21, 37 | npcand 11571 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π) + π) = (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯)) |
71 | 70 | oveq2d 7421 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· (((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π) + π)) = ((ΞΌβπ) Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯))) |
72 | 11, 38, 37 | adddid 11234 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· (((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π) + π)) = (((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) + ((ΞΌβπ) Β· π))) |
73 | 71, 72 | eqtr3d 2774 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((ΞΌβπ) Β· (Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯)) = (((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) + ((ΞΌβπ) Β· π))) |
74 | 67, 69, 73 | 3eqtr3d 2780 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (Ξ£π β
(1...(ββ(π₯ /
π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) = (((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) + ((ΞΌβπ) Β· π))) |
75 | 74 | sumeq2dv 15645 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + ((ΞΌβπ) Β· π))) |
76 | 5, 39, 41 | fsumadd 15682 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + ((ΞΌβπ) Β· π)) = (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π))) |
77 | 62, 75, 76 | 3eqtrrd 2777 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π)) = (Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯)) |
78 | 77 | oveq1d 7420 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π)) β (2 Β· (logβπ₯))) = ((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) |
79 | 53, 78 | eqtr3d 2774 |
. . . . 5
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) = ((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) |
80 | 79 | mpteq2dva 5247 |
. . . 4
β’ (β€
β (π₯ β
β+ β¦ (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)) + (Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) = (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯))))) |
81 | 52, 80 | eqtrd 2772 |
. . 3
β’ (β€
β ((π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) βf + (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) = (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯))))) |
82 | | 1red 11211 |
. . . . 5
β’ (β€
β 1 β β) |
83 | 5, 28 | fsumrecl 15676 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) β β) |
84 | 83, 23 | rerpdivcld 13043 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) β β) |
85 | 84 | recnd 11238 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) β β) |
86 | | 2cnd 12286 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β 2 β β) |
87 | | 2nn0 12485 |
. . . . . . . 8
β’ 2 β
β0 |
88 | | logexprlim 26717 |
. . . . . . . 8
β’ (2 β
β0 β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯)) βπ
(!β2)) |
89 | 87, 88 | mp1i 13 |
. . . . . . 7
β’ (β€
β (π₯ β
β+ β¦ (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯)) βπ
(!β2)) |
90 | | 2cnd 12286 |
. . . . . . . 8
β’ (β€
β 2 β β) |
91 | | rlimconst 15484 |
. . . . . . . 8
β’
((β+ β β β§ 2 β β) β
(π₯ β
β+ β¦ 2) βπ 2) |
92 | 2, 90, 91 | sylancr 587 |
. . . . . . 7
β’ (β€
β (π₯ β
β+ β¦ 2) βπ 2) |
93 | 85, 86, 89, 92 | rlimadd 15583 |
. . . . . 6
β’ (β€
β (π₯ β
β+ β¦ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) βπ
((!β2) + 2)) |
94 | | rlimo1 15557 |
. . . . . 6
β’ ((π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) βπ
((!β2) + 2) β (π₯
β β+ β¦ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) β π(1)) |
95 | 93, 94 | syl 17 |
. . . . 5
β’ (β€
β (π₯ β
β+ β¦ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) β π(1)) |
96 | | readdcl 11189 |
. . . . . 6
β’
(((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) β β β§ 2 β β)
β ((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2) β β) |
97 | 84, 29, 96 | sylancl 586 |
. . . . 5
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2) β β) |
98 | 40 | abscld 15379 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (absβΞ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β β) |
99 | 97 | recnd 11238 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2) β β) |
100 | 99 | abscld 15379 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (absβ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) β β) |
101 | 39 | abscld 15379 |
. . . . . . . . 9
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((ΞΌβπ)
Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β β) |
102 | 5, 101 | fsumrecl 15676 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(absβ((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β β) |
103 | 5, 39 | fsumabs 15743 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β (absβΞ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ Ξ£π β (1...(ββπ₯))(absβ((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)))) |
104 | | readdcl 11189 |
. . . . . . . . . . . 12
β’
((((logβ(π₯ /
π))β2) β β
β§ 2 β β) β (((logβ(π₯ / π))β2) + 2) β
β) |
105 | 28, 29, 104 | sylancl 586 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((logβ(π₯ / π))β2) + 2) β
β) |
106 | 105, 19 | rerpdivcld 13043 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((((logβ(π₯ / π))β2) + 2) / π₯) β β) |
107 | 5, 106 | fsumrecl 15676 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((((logβ(π₯ / π))β2) + 2) / π₯) β β) |
108 | 38 | abscld 15379 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) β β) |
109 | 11, 38 | absmuld 15397 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((ΞΌβπ)
Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) = ((absβ(ΞΌβπ)) Β·
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)))) |
110 | 11 | abscld 15379 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ(ΞΌβπ))
β β) |
111 | | 1red 11211 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β 1 β
β) |
112 | 38 | absge0d 15387 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β 0 β€
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) |
113 | | mule1 26641 |
. . . . . . . . . . . . . . 15
β’ (π β β β
(absβ(ΞΌβπ))
β€ 1) |
114 | 7, 113 | syl 17 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ(ΞΌβπ))
β€ 1) |
115 | 110, 111,
108, 112, 114 | lemul1ad 12149 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
((absβ(ΞΌβπ))
Β· (absβ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) β€ (1 Β·
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)))) |
116 | 108 | recnd 11238 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) β β) |
117 | 116 | mullidd 11228 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (1 Β·
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) = (absβ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) |
118 | 115, 117 | breqtrd 5173 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
((absβ(ΞΌβπ))
Β· (absβ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) β€ (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) |
119 | 109, 118 | eqbrtrd 5169 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((ΞΌβπ)
Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) |
120 | 65 | simpld 495 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π₯ β β) |
121 | 120, 38 | absmuld 15397 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (absβ(π₯ Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) = ((absβπ₯) Β· (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)))) |
122 | 120, 21, 37 | subdid 11666 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) = ((π₯ Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯)) β (π₯ Β· π))) |
123 | 65 | simprd 496 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π₯ β 0) |
124 | 64, 120, 123 | divcan2d 11988 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯)) = Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2)) |
125 | 34 | recnd 11238 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) β
β) |
126 | 7 | nnrpd 13010 |
. . . . . . . . . . . . . . . . . . 19
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β β+) |
127 | | rpcnne0 12988 |
. . . . . . . . . . . . . . . . . . 19
β’ (π β β+
β (π β β
β§ π β
0)) |
128 | 126, 127 | syl 17 |
. . . . . . . . . . . . . . . . . 18
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π β β β§ π β 0)) |
129 | | divass 11886 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π₯ β β β§
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) β β β§
(π β β β§
π β 0)) β ((π₯ Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))) / π) = (π₯ Β· ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π))) |
130 | 22 | oveq2i 7416 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π₯ Β· π) = (π₯ Β· ((((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))) / π)) |
131 | 129, 130 | eqtr4di 2790 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π₯ β β β§
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) β β β§
(π β β β§
π β 0)) β ((π₯ Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))) / π) = (π₯ Β· π)) |
132 | | div23 11887 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π₯ β β β§
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) β β β§
(π β β β§
π β 0)) β ((π₯ Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))) / π) = ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
133 | 131, 132 | eqtr3d 2774 |
. . . . . . . . . . . . . . . . . 18
β’ ((π₯ β β β§
(((logβ(π₯ / π))β2) + (2 β (2
Β· (logβ(π₯ /
π))))) β β β§
(π β β β§
π β 0)) β (π₯ Β· π) = ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
134 | 120, 125,
128, 133 | syl3anc 1371 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ Β· π) = ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))) |
135 | 124, 134 | oveq12d 7423 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((π₯ Β· (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯)) β (π₯ Β· π)) = (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))))) |
136 | 122, 135 | eqtrd 2772 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) = (Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))))) |
137 | 136 | fveq2d 6892 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (absβ(π₯ Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) = (absβ(Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π))))))))) |
138 | | rprege0 12985 |
. . . . . . . . . . . . . . . 16
β’ (π₯ β β+
β (π₯ β β
β§ 0 β€ π₯)) |
139 | | absid 15239 |
. . . . . . . . . . . . . . . 16
β’ ((π₯ β β β§ 0 β€
π₯) β (absβπ₯) = π₯) |
140 | 19, 138, 139 | 3syl 18 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (absβπ₯) = π₯) |
141 | 140 | oveq1d 7420 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((absβπ₯) Β·
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) = (π₯ Β· (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)))) |
142 | 121, 137,
141 | 3eqtr3d 2780 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ(Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))))) = (π₯ Β· (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π)))) |
143 | 7 | nncnd 12224 |
. . . . . . . . . . . . . . . . 17
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β β) |
144 | 143 | mullidd 11228 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (1 Β· π) = π) |
145 | | rpre 12978 |
. . . . . . . . . . . . . . . . . . 19
β’ (π₯ β β+
β π₯ β
β) |
146 | 145 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
β’
((β€ β§ π₯
β β+) β π₯ β β) |
147 | | fznnfl 13823 |
. . . . . . . . . . . . . . . . . 18
β’ (π₯ β β β (π β
(1...(ββπ₯))
β (π β β
β§ π β€ π₯))) |
148 | 146, 147 | syl 17 |
. . . . . . . . . . . . . . . . 17
β’
((β€ β§ π₯
β β+) β (π β (1...(ββπ₯)) β (π β β β§ π β€ π₯))) |
149 | 148 | simplbda 500 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π β€ π₯) |
150 | 144, 149 | eqbrtrd 5169 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (1 Β· π) β€ π₯) |
151 | 19 | rpred 13012 |
. . . . . . . . . . . . . . . 16
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β π₯ β β) |
152 | 111, 151,
126 | lemuldivd 13061 |
. . . . . . . . . . . . . . 15
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((1 Β· π) β€ π₯ β 1 β€ (π₯ / π))) |
153 | 150, 152 | mpbid 231 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β 1 β€ (π₯ / π)) |
154 | | log2sumbnd 27036 |
. . . . . . . . . . . . . 14
β’ (((π₯ / π) β β+ β§ 1 β€
(π₯ / π)) β (absβ(Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))))) β€
(((logβ(π₯ / π))β2) +
2)) |
155 | 26, 153, 154 | syl2anc 584 |
. . . . . . . . . . . . 13
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ(Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) β ((π₯ / π) Β· (((logβ(π₯ / π))β2) + (2 β (2 Β·
(logβ(π₯ / π)))))))) β€
(((logβ(π₯ / π))β2) +
2)) |
156 | 142, 155 | eqbrtrrd 5171 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (π₯ Β· (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ (((logβ(π₯ / π))β2) + 2)) |
157 | 108, 105,
19 | lemuldiv2d 13062 |
. . . . . . . . . . . 12
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((π₯ Β· (absβ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ (((logβ(π₯ / π))β2) + 2) β
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) β€ ((((logβ(π₯ / π))β2) + 2) / π₯))) |
158 | 156, 157 | mpbid 231 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((Ξ£π
β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π)) β€ ((((logβ(π₯ / π))β2) + 2) / π₯)) |
159 | 101, 108,
106, 119, 158 | letrd 11367 |
. . . . . . . . . 10
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β
(absβ((ΞΌβπ)
Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ ((((logβ(π₯ / π))β2) + 2) / π₯)) |
160 | 5, 101, 106, 159 | fsumle 15741 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(absβ((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ Ξ£π β (1...(ββπ₯))((((logβ(π₯ / π))β2) + 2) / π₯)) |
161 | 5, 105 | fsumrecl 15676 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) β
β) |
162 | | remulcl 11191 |
. . . . . . . . . . . . 13
β’ ((π₯ β β β§ 2 β
β) β (π₯ Β·
2) β β) |
163 | 146, 29, 162 | sylancl 586 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β (π₯ Β· 2) β β) |
164 | 83, 163 | readdcld 11239 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2)) β
β) |
165 | 28 | recnd 11238 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β ((logβ(π₯ / π))β2) β β) |
166 | | 2cnd 12286 |
. . . . . . . . . . . . . 14
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β 2 β
β) |
167 | 5, 165, 166 | fsumadd 15682 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) = (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + Ξ£π β (1...(ββπ₯))2)) |
168 | | fsumconst 15732 |
. . . . . . . . . . . . . . . 16
β’
(((1...(ββπ₯)) β Fin β§ 2 β β) β
Ξ£π β
(1...(ββπ₯))2 =
((β―β(1...(ββπ₯))) Β· 2)) |
169 | 5, 43, 168 | sylancl 586 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))2 =
((β―β(1...(ββπ₯))) Β· 2)) |
170 | 138 | adantl 482 |
. . . . . . . . . . . . . . . . 17
β’
((β€ β§ π₯
β β+) β (π₯ β β β§ 0 β€ π₯)) |
171 | | flge0nn0 13781 |
. . . . . . . . . . . . . . . . 17
β’ ((π₯ β β β§ 0 β€
π₯) β
(ββπ₯) β
β0) |
172 | | hashfz1 14302 |
. . . . . . . . . . . . . . . . 17
β’
((ββπ₯)
β β0 β (β―β(1...(ββπ₯))) = (ββπ₯)) |
173 | 170, 171,
172 | 3syl 18 |
. . . . . . . . . . . . . . . 16
β’
((β€ β§ π₯
β β+) β (β―β(1...(ββπ₯))) = (ββπ₯)) |
174 | 173 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β β+) β ((β―β(1...(ββπ₯))) Β· 2) =
((ββπ₯) Β·
2)) |
175 | 169, 174 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))2 = ((ββπ₯) Β· 2)) |
176 | 175 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + Ξ£π β (1...(ββπ₯))2) = (Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) + ((ββπ₯) Β· 2))) |
177 | 167, 176 | eqtrd 2772 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) = (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + ((ββπ₯) Β· 2))) |
178 | | reflcl 13757 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β β
(ββπ₯) β
β) |
179 | 146, 178 | syl 17 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β β+) β (ββπ₯) β β) |
180 | 29 | a1i 11 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β β+) β 2 β β) |
181 | 179, 180 | remulcld 11240 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β β+) β ((ββπ₯) Β· 2) β
β) |
182 | | flle 13760 |
. . . . . . . . . . . . . . 15
β’ (π₯ β β β
(ββπ₯) β€
π₯) |
183 | 146, 182 | syl 17 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β β+) β (ββπ₯) β€ π₯) |
184 | | 2pos 12311 |
. . . . . . . . . . . . . . . . 17
β’ 0 <
2 |
185 | 29, 184 | pm3.2i 471 |
. . . . . . . . . . . . . . . 16
β’ (2 β
β β§ 0 < 2) |
186 | 185 | a1i 11 |
. . . . . . . . . . . . . . 15
β’
((β€ β§ π₯
β β+) β (2 β β β§ 0 <
2)) |
187 | | lemul1 12062 |
. . . . . . . . . . . . . . 15
β’
(((ββπ₯)
β β β§ π₯
β β β§ (2 β β β§ 0 < 2)) β
((ββπ₯) β€
π₯ β
((ββπ₯) Β·
2) β€ (π₯ Β·
2))) |
188 | 179, 146,
186, 187 | syl3anc 1371 |
. . . . . . . . . . . . . 14
β’
((β€ β§ π₯
β β+) β ((ββπ₯) β€ π₯ β ((ββπ₯) Β· 2) β€ (π₯ Β· 2))) |
189 | 183, 188 | mpbid 231 |
. . . . . . . . . . . . 13
β’
((β€ β§ π₯
β β+) β ((ββπ₯) Β· 2) β€ (π₯ Β· 2)) |
190 | 181, 163,
83, 189 | leadd2dd 11825 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + ((ββπ₯) Β· 2)) β€
(Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2))) |
191 | 177, 190 | eqbrtrd 5169 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) β€ (Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2))) |
192 | 161, 164,
23, 191 | lediv1dd 13070 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) / π₯) β€ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2)) / π₯)) |
193 | 105 | recnd 11238 |
. . . . . . . . . . 11
β’
(((β€ β§ π₯
β β+) β§ π β (1...(ββπ₯))) β (((logβ(π₯ / π))β2) + 2) β
β) |
194 | 5, 56, 193, 61 | fsumdivc 15728 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β β+) β (Ξ£π β (1...(ββπ₯))(((logβ(π₯ / π))β2) + 2) / π₯) = Ξ£π β (1...(ββπ₯))((((logβ(π₯ / π))β2) + 2) / π₯)) |
195 | 83 | recnd 11238 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) β β) |
196 | 56, 86 | mulcld 11230 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β (π₯ Β· 2) β β) |
197 | | divdir 11893 |
. . . . . . . . . . . 12
β’
((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) β β β§ (π₯ Β· 2) β β
β§ (π₯ β β
β§ π₯ β 0)) β
((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2)) / π₯) = ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + ((π₯ Β· 2) / π₯))) |
198 | 195, 196,
55, 197 | syl3anc 1371 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2)) / π₯) = ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + ((π₯ Β· 2) / π₯))) |
199 | 86, 56, 61 | divcan3d 11991 |
. . . . . . . . . . . 12
β’
((β€ β§ π₯
β β+) β ((π₯ Β· 2) / π₯) = 2) |
200 | 199 | oveq2d 7421 |
. . . . . . . . . . 11
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + ((π₯ Β· 2) / π₯)) = ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) |
201 | 198, 200 | eqtrd 2772 |
. . . . . . . . . 10
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) + (π₯ Β· 2)) / π₯) = ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) |
202 | 192, 194,
201 | 3brtr3d 5178 |
. . . . . . . . 9
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))((((logβ(π₯ / π))β2) + 2) / π₯) β€ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) |
203 | 102, 107,
97, 160, 202 | letrd 11367 |
. . . . . . . 8
β’
((β€ β§ π₯
β β+) β Ξ£π β (1...(ββπ₯))(absβ((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) |
204 | 98, 102, 97, 103, 203 | letrd 11367 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β (absβΞ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2)) |
205 | 97 | leabsd 15357 |
. . . . . . 7
β’
((β€ β§ π₯
β β+) β ((Ξ£π β (1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2) β€ (absβ((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2))) |
206 | 98, 97, 100, 204, 205 | letrd 11367 |
. . . . . 6
β’
((β€ β§ π₯
β β+) β (absβΞ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β€ (absβ((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2))) |
207 | 206 | adantrr 715 |
. . . . 5
β’
((β€ β§ (π₯
β β+ β§ 1 β€ π₯)) β (absβΞ£π β
(1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) β€ (absβ((Ξ£π β
(1...(ββπ₯))((logβ(π₯ / π))β2) / π₯) + 2))) |
208 | 82, 95, 97, 40, 207 | o1le 15595 |
. . . 4
β’ (β€
β (π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) β π(1)) |
209 | 22 | selberglem1 27037 |
. . . 4
β’ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) β
π(1) |
210 | | o1add 15554 |
. . . 4
β’ (((π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β (1...(ββ(π₯ / π)))((logβπ)β2) / π₯) β π))) β π(1) β§ (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯)))) β π(1)) β
((π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) βf + (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) β
π(1)) |
211 | 208, 209,
210 | sylancl 586 |
. . 3
β’ (β€
β ((π₯ β
β+ β¦ Ξ£π β (1...(ββπ₯))((ΞΌβπ) Β· ((Ξ£π β
(1...(ββ(π₯ /
π)))((logβπ)β2) / π₯) β π))) βf + (π₯ β β+
β¦ (Ξ£π β
(1...(ββπ₯))((ΞΌβπ) Β· π) β (2 Β· (logβπ₯))))) β
π(1)) |
212 | 81, 211 | eqeltrrd 2834 |
. 2
β’ (β€
β (π₯ β
β+ β¦ ((Ξ£π β (1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) β
π(1)) |
213 | 212 | mptru 1548 |
1
β’ (π₯ β β+
β¦ ((Ξ£π β
(1...(ββπ₯))Ξ£π β (1...(ββ(π₯ / π)))((ΞΌβπ) Β· ((logβπ)β2)) / π₯) β (2 Β· (logβπ₯)))) β
π(1) |