MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Structured version   Visualization version   GIF version

Theorem selberglem2 25529
Description: Lemma for selberg 25531. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
Assertion
Ref Expression
selberglem2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑚,𝑛)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 10282 . . . . . . 7 ℝ ∈ V
2 rpssre 12038 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 4966 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 fzfid 12983 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12580 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 473 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 mucl 25161 . . . . . . . . . 10 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
97, 8syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
109zred 11732 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
1110recnd 10324 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
12 fzfid 12983 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
13 elfznn 12580 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
1413adantl 473 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
1514nnrpd 12071 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
1615relogcld 24663 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
1716resqcld 13245 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℝ)
1812, 17fsumrecl 14753 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℝ)
19 simplr 785 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
2018, 19rerpdivcld 12104 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℝ)
2120recnd 10324 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℂ)
22 selberglem1.t . . . . . . . . . 10 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
23 simpr 477 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
246nnrpd 12071 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
25 rpdivcl 12057 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
2623, 24, 25syl2an 589 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2726relogcld 24663 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
2827resqcld 13245 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
29 2re 11348 . . . . . . . . . . . . 13 2 ∈ ℝ
30 remulcl 10276 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
3129, 27, 30sylancr 581 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
32 resubcl 10601 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3329, 31, 32sylancr 581 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3428, 33readdcld 10325 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
3534, 7nndivred 11328 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛) ∈ ℝ)
3622, 35syl5eqel 2848 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℝ)
3736recnd 10324 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
3821, 37subcld 10648 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) ∈ ℂ)
3911, 38mulcld 10316 . . . . . 6 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
405, 39fsumcl 14752 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
4111, 37mulcld 10316 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · 𝑇) ∈ ℂ)
425, 41fsumcl 14752 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) ∈ ℂ)
43 2cn 11349 . . . . . . 7 2 ∈ ℂ
44 relogcl 24616 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4544adantl 473 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4645recnd 10324 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
47 mulcl 10275 . . . . . . 7 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
4843, 46, 47sylancr 581 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
4942, 48subcld 10648 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) ∈ ℂ)
50 eqidd 2766 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
51 eqidd 2766 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
524, 40, 49, 50, 51offval2 7114 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))))
5340, 42, 48addsubassd 10668 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
54 rpcnne0 12051 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5554adantl 473 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5655simpld 488 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
5710adantr 472 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (μ‘𝑛) ∈ ℝ)
5857, 17remulcld 10326 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
5912, 58fsumrecl 14753 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
6059recnd 10324 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℂ)
6155simprd 489 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
625, 56, 60, 61fsumdivc 14805 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
6317recnd 10324 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℂ)
6412, 63fsumcl 14752 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ)
6555adantr 472 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
66 divass 10959 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6711, 64, 65, 66syl3anc 1490 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6812, 11, 63fsummulc2 14803 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)))
6968oveq1d 6859 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7021, 37npcand 10652 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥))
7170oveq2d 6860 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
7211, 38, 37adddid 10320 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7371, 72eqtr3d 2801 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7467, 69, 733eqtr3d 2807 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7574sumeq2dv 14721 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
765, 39, 41fsumadd 14758 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)))
7762, 75, 763eqtrrd 2804 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7877oveq1d 6859 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
7953, 78eqtr3d 2801 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
8079mpteq2dva 4905 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
8152, 80eqtrd 2799 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
82 1red 10296 . . . . 5 (⊤ → 1 ∈ ℝ)
835, 28fsumrecl 14753 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
8483, 23rerpdivcld 12104 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ)
8584recnd 10324 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℂ)
86 2cnd 11352 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
87 2nn0 11559 . . . . . . . 8 2 ∈ ℕ0
88 logexprlim 25244 . . . . . . . 8 (2 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
8987, 88mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
90 2cnd 11352 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
91 rlimconst 14563 . . . . . . . 8 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
922, 90, 91sylancr 581 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
9385, 86, 89, 92rlimadd 14661 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2))
94 rlimo1 14635 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2) → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
9593, 94syl 17 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
96 readdcl 10274 . . . . . 6 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ ∧ 2 ∈ ℝ) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9784, 29, 96sylancl 580 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9840abscld 14463 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
9997recnd 10324 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℂ)
10099abscld 14463 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ ℝ)
10139abscld 14463 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1025, 101fsumrecl 14753 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1035, 39fsumabs 14820 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
104 readdcl 10274 . . . . . . . . . . . 12 ((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 2 ∈ ℝ) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
10528, 29, 104sylancl 580 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
106105, 19rerpdivcld 12104 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
1075, 106fsumrecl 14753 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
10838abscld 14463 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℝ)
10911, 38absmuld 14481 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
11011abscld 14463 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
111 1red 10296 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
11238absge0d 14471 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
113 mule1 25168 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
1147, 113syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
115110, 111, 108, 112, 114lemul1ad 11219 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
116108recnd 10324 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
117116mulid2d 10314 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
118115, 117breqtrd 4837 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
119109, 118eqbrtrd 4833 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
12065simpld 488 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
121120, 38absmuld 14481 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
122120, 21, 37subdid 10742 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)))
12365simprd 489 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
12464, 120, 123divcan2d 11059 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2))
12534recnd 10324 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1267nnrpd 12071 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
127 rpcnne0 12051 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
128126, 127syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
129 divass 10959 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)))
13022oveq2i 6855 . . . . . . . . . . . . . . . . . . . 20 (𝑥 · 𝑇) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛))
131129, 130syl6eqr 2817 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · 𝑇))
132 div23 10960 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
133131, 132eqtr3d 2801 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
134120, 125, 128, 133syl3anc 1490 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
135124, 134oveq12d 6862 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
136122, 135eqtrd 2799 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
137136fveq2d 6381 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))))
138 rprege0 12048 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
139 absid 14324 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
14019, 138, 1393syl 18 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑥) = 𝑥)
141140oveq1d 6859 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
142121, 137, 1413eqtr3d 2807 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
1437nncnd 11294 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
144143mulid2d 10314 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
145 rpre 12039 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
146145adantl 473 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
147 fznnfl 12872 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
149148simplbda 493 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
150144, 149eqbrtrd 4833 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
15119rpred 12073 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
152111, 151, 126lemuldivd 12122 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
153150, 152mpbid 223 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
154 log2sumbnd 25527 . . . . . . . . . . . . . 14 (((𝑥 / 𝑛) ∈ ℝ+ ∧ 1 ≤ (𝑥 / 𝑛)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
15526, 153, 154syl2anc 579 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
156142, 155eqbrtrrd 4835 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
157108, 105, 19lemuldiv2d 12123 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2) ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥)))
158156, 157mpbid 223 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
159101, 108, 106, 119, 158letrd 10450 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1605, 101, 106, 159fsumle 14818 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1615, 105fsumrecl 14753 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
162 remulcl 10276 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑥 · 2) ∈ ℝ)
163146, 29, 162sylancl 580 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℝ)
16483, 163readdcld 10325 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) ∈ ℝ)
16528recnd 10324 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
166 2cnd 11352 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1675, 165, 166fsumadd 14758 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2))
168 fsumconst 14809 . . . . . . . . . . . . . . . 16 (((1...(⌊‘𝑥)) ∈ Fin ∧ 2 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
1695, 43, 168sylancl 580 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
170138adantl 473 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
171 flge0nn0 12832 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
172 hashfz1 13341 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
173170, 171, 1723syl 18 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
174173oveq1d 6859 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · 2) = ((⌊‘𝑥) · 2))
175169, 174eqtrd 2799 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((⌊‘𝑥) · 2))
176175oveq2d 6860 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
177167, 176eqtrd 2799 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
178 reflcl 12808 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
179146, 178syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
18029a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℝ)
181179, 180remulcld 10326 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ∈ ℝ)
182 flle 12811 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
183146, 182syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
184 2pos 11384 . . . . . . . . . . . . . . . . 17 0 < 2
18529, 184pm3.2i 462 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
186185a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℝ ∧ 0 < 2))
187 lemul1 11131 . . . . . . . . . . . . . . 15 (((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
188179, 146, 186, 187syl3anc 1490 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
189183, 188mpbid 223 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ≤ (𝑥 · 2))
190181, 163, 83, 189leadd2dd 10898 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
191177, 190eqbrtrd 4833 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
192161, 164, 23, 191lediv1dd 12131 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥))
193105recnd 10324 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℂ)
1945, 56, 193, 61fsumdivc 14805 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
19583recnd 10324 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
19656, 86mulcld 10316 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℂ)
197 divdir 10966 . . . . . . . . . . . 12 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ ∧ (𝑥 · 2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
198195, 196, 55, 197syl3anc 1490 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
19986, 56, 61divcan3d 11062 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑥 · 2) / 𝑥) = 2)
200199oveq2d 6860 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
201198, 200eqtrd 2799 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
202192, 194, 2013brtr3d 4842 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
203102, 107, 97, 160, 202letrd 10450 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20498, 102, 97, 103, 203letrd 10450 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20597leabsd 14441 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20698, 97, 100, 204, 205letrd 10450 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
207206adantrr 708 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20882, 95, 97, 40, 207o1le 14671 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1))
20922selberglem1 25528 . . . 4 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
210 o1add 14632 . . . 4 (((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
211208, 209, 210sylancl 580 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘𝑓 + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
21281, 211eqeltrrd 2845 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
213212mptru 1660 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 197  wa 384  w3a 1107   = wceq 1652  wtru 1653  wcel 2155  wne 2937  Vcvv 3350  wss 3734   class class class wbr 4811  cmpt 4890  cfv 6070  (class class class)co 6844  𝑓 cof 7095  Fincfn 8162  cc 10189  cr 10190  0cc0 10191  1c1 10192   + caddc 10194   · cmul 10196   < clt 10330  cle 10331  cmin 10522   / cdiv 10940  cn 11276  2c2 11329  0cn0 11540  cz 11626  +crp 12031  ...cfz 12536  cfl 12802  cexp 13070  !cfa 13267  chash 13324  abscabs 14262  𝑟 crli 14504  𝑂(1)co1 14505  Σcsu 14704  logclog 24595  μcmu 25115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269  ax-addf 10270  ax-mulf 10271
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-pm 8065  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-4 11339  df-5 11340  df-6 11341  df-7 11342  df-8 11343  df-9 11344  df-n0 11541  df-xnn0 11613  df-z 11627  df-dec 11744  df-uz 11890  df-q 11993  df-rp 12032  df-xneg 12149  df-xadd 12150  df-xmul 12151  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-mod 12880  df-seq 13012  df-exp 13071  df-fac 13268  df-bc 13297  df-hash 13325  df-shft 14095  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-limsup 14490  df-clim 14507  df-rlim 14508  df-o1 14509  df-lo1 14510  df-sum 14705  df-ef 15083  df-e 15084  df-sin 15085  df-cos 15086  df-pi 15088  df-dvds 15269  df-gcd 15501  df-prm 15669  df-pc 15824  df-struct 16135  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-mulr 16231  df-starv 16232  df-sca 16233  df-vsca 16234  df-ip 16235  df-tset 16236  df-ple 16237  df-ds 16239  df-unif 16240  df-hom 16241  df-cco 16242  df-rest 16352  df-topn 16353  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-prds 16377  df-xrs 16431  df-qtop 16436  df-imas 16437  df-xps 16439  df-mre 16515  df-mrc 16516  df-acs 16518  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-psmet 20014  df-xmet 20015  df-met 20016  df-bl 20017  df-mopn 20018  df-fbas 20019  df-fg 20020  df-cnfld 20023  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cld 21106  df-ntr 21107  df-cls 21108  df-nei 21185  df-lp 21223  df-perf 21224  df-cn 21314  df-cnp 21315  df-haus 21402  df-cmp 21473  df-tx 21648  df-hmeo 21841  df-fil 21932  df-fm 22024  df-flim 22025  df-flf 22026  df-xms 22407  df-ms 22408  df-tms 22409  df-cncf 22963  df-limc 23924  df-dv 23925  df-log 24597  df-cxp 24598  df-em 25013  df-mu 25121
This theorem is referenced by:  selberglem3  25530  selberg  25531
  Copyright terms: Public domain W3C validator