MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  selberglem2 Structured version   Visualization version   GIF version

Theorem selberglem2 26130
Description: Lemma for selberg 26132. (Contributed by Mario Carneiro, 23-May-2016.)
Hypothesis
Ref Expression
selberglem1.t 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
Assertion
Ref Expression
selberglem2 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Distinct variable group:   𝑚,𝑛,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑚,𝑛)

Proof of Theorem selberglem2
StepHypRef Expression
1 reex 10617 . . . . . . 7 ℝ ∈ V
2 rpssre 12384 . . . . . . 7 + ⊆ ℝ
31, 2ssexi 5190 . . . . . 6 + ∈ V
43a1i 11 . . . . 5 (⊤ → ℝ+ ∈ V)
5 fzfid 13336 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
6 elfznn 12931 . . . . . . . . . . 11 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
76adantl 485 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
8 mucl 25726 . . . . . . . . . 10 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
97, 8syl 17 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
109zred 12075 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
1110recnd 10658 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℂ)
12 fzfid 13336 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1...(⌊‘(𝑥 / 𝑛))) ∈ Fin)
13 elfznn 12931 . . . . . . . . . . . . . . 15 (𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛))) → 𝑚 ∈ ℕ)
1413adantl 485 . . . . . . . . . . . . . 14 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℕ)
1514nnrpd 12417 . . . . . . . . . . . . 13 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → 𝑚 ∈ ℝ+)
1615relogcld 25214 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (log‘𝑚) ∈ ℝ)
1716resqcld 13607 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℝ)
1812, 17fsumrecl 15083 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℝ)
19 simplr 768 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
2018, 19rerpdivcld 12450 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℝ)
2120recnd 10658 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) ∈ ℂ)
22 selberglem1.t . . . . . . . . . 10 𝑇 = ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)
23 simpr 488 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
246nnrpd 12417 . . . . . . . . . . . . . . 15 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
25 rpdivcl 12402 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
2623, 24, 25syl2an 598 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
2726relogcld 25214 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
2827resqcld 13607 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
29 2re 11699 . . . . . . . . . . . . 13 2 ∈ ℝ
30 remulcl 10611 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (log‘(𝑥 / 𝑛)) ∈ ℝ) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
3129, 27, 30sylancr 590 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ)
32 resubcl 10939 . . . . . . . . . . . . 13 ((2 ∈ ℝ ∧ (2 · (log‘(𝑥 / 𝑛))) ∈ ℝ) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3329, 31, 32sylancr 590 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 − (2 · (log‘(𝑥 / 𝑛)))) ∈ ℝ)
3428, 33readdcld 10659 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℝ)
3534, 7nndivred 11679 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛) ∈ ℝ)
3622, 35eqeltrid 2894 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℝ)
3736recnd 10658 . . . . . . . 8 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
3821, 37subcld 10986 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) ∈ ℂ)
3911, 38mulcld 10650 . . . . . 6 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
405, 39fsumcl 15082 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
4111, 37mulcld 10650 . . . . . . 7 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · 𝑇) ∈ ℂ)
425, 41fsumcl 15082 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) ∈ ℂ)
43 2cn 11700 . . . . . . 7 2 ∈ ℂ
44 relogcl 25167 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
4544adantl 485 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
4645recnd 10658 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
47 mulcl 10610 . . . . . . 7 ((2 ∈ ℂ ∧ (log‘𝑥) ∈ ℂ) → (2 · (log‘𝑥)) ∈ ℂ)
4843, 46, 47sylancr 590 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
4942, 48subcld 10986 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))) ∈ ℂ)
50 eqidd 2799 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
51 eqidd 2799 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
524, 40, 49, 50, 51offval2 7406 . . . 4 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘f + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))))
5340, 42, 48addsubassd 11006 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))))
54 rpcnne0 12395 . . . . . . . . . . 11 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5554adantl 485 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
5655simpld 498 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
5710adantr 484 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → (μ‘𝑛) ∈ ℝ)
5857, 17remulcld 10660 . . . . . . . . . . 11 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
5912, 58fsumrecl 15083 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℝ)
6059recnd 10658 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) ∈ ℂ)
6155simprd 499 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
625, 56, 60, 61fsumdivc 15133 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
6317recnd 10658 . . . . . . . . . . . 12 ((((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) ∧ 𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))) → ((log‘𝑚)↑2) ∈ ℂ)
6412, 63fsumcl 15082 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ)
6555adantr 484 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
66 divass 11305 . . . . . . . . . . 11 (((μ‘𝑛) ∈ ℂ ∧ Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6711, 64, 65, 66syl3anc 1368 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
6812, 11, 63fsummulc2 15131 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)))
6968oveq1d 7150 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) · Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2)) / 𝑥) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7021, 37npcand 10990 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥))
7170oveq2d 7151 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)))
7211, 38, 37adddid 10654 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇) + 𝑇)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7371, 72eqtr3d 2835 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7467, 69, 733eqtr3d 2841 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = (((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
7574sumeq2dv 15052 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)))
765, 39, 41fsumadd 15088 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + ((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)))
7762, 75, 763eqtrrd 2838 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥))
7877oveq1d 7150 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇)) − (2 · (log‘𝑥))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
7953, 78eqtr3d 2835 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥))))
8079mpteq2dva 5125 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) + (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
8152, 80eqtrd 2833 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘f + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))))
82 1red 10631 . . . . 5 (⊤ → 1 ∈ ℝ)
835, 28fsumrecl 15083 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℝ)
8483, 23rerpdivcld 12450 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ)
8584recnd 10658 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℂ)
86 2cnd 11703 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
87 2nn0 11902 . . . . . . . 8 2 ∈ ℕ0
88 logexprlim 25809 . . . . . . . 8 (2 ∈ ℕ0 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
8987, 88mp1i 13 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥)) ⇝𝑟 (!‘2))
90 2cnd 11703 . . . . . . . 8 (⊤ → 2 ∈ ℂ)
91 rlimconst 14893 . . . . . . . 8 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
922, 90, 91sylancr 590 . . . . . . 7 (⊤ → (𝑥 ∈ ℝ+ ↦ 2) ⇝𝑟 2)
9385, 86, 89, 92rlimadd 14991 . . . . . 6 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2))
94 rlimo1 14965 . . . . . 6 ((𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ⇝𝑟 ((!‘2) + 2) → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
9593, 94syl 17 . . . . 5 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ 𝑂(1))
96 readdcl 10609 . . . . . 6 (((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) ∈ ℝ ∧ 2 ∈ ℝ) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9784, 29, 96sylancl 589 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℝ)
9840abscld 14788 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
9997recnd 10658 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ∈ ℂ)
10099abscld 14788 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)) ∈ ℝ)
10139abscld 14788 . . . . . . . . 9 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1025, 101fsumrecl 15083 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ ℝ)
1035, 39fsumabs 15148 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
104 readdcl 10609 . . . . . . . . . . . 12 ((((log‘(𝑥 / 𝑛))↑2) ∈ ℝ ∧ 2 ∈ ℝ) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
10528, 29, 104sylancl 589 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
106105, 19rerpdivcld 12450 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
1075, 106fsumrecl 15083 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ∈ ℝ)
10838abscld 14788 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℝ)
10911, 38absmuld 14806 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
11011abscld 14788 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ∈ ℝ)
111 1red 10631 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
11238absge0d 14796 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
113 mule1 25733 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → (abs‘(μ‘𝑛)) ≤ 1)
1147, 113syl 17 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(μ‘𝑛)) ≤ 1)
115110, 111, 108, 112, 114lemul1ad 11568 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
116108recnd 10658 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ∈ ℂ)
117116mulid2d 10648 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
118115, 117breqtrd 5056 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘(μ‘𝑛)) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
119109, 118eqbrtrd 5052 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)))
12065simpld 498 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℂ)
121120, 38absmuld 14806 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
122120, 21, 37subdid 11085 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)))
12365simprd 499 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ≠ 0)
12464, 120, 123divcan2d 11407 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) = Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2))
12534recnd 10658 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ)
1267nnrpd 12417 . . . . . . . . . . . . . . . . . . 19 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℝ+)
127 rpcnne0 12395 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℝ+ → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
128126, 127syl 17 . . . . . . . . . . . . . . . . . 18 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0))
129 divass 11305 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛)))
13022oveq2i 7146 . . . . . . . . . . . . . . . . . . . 20 (𝑥 · 𝑇) = (𝑥 · ((((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) / 𝑛))
131129, 130eqtr4di 2851 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = (𝑥 · 𝑇))
132 div23 11306 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → ((𝑥 · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))) / 𝑛) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
133131, 132eqtr3d 2835 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ ℂ ∧ (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))) ∈ ℂ ∧ (𝑛 ∈ ℂ ∧ 𝑛 ≠ 0)) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
134120, 125, 128, 133syl3anc 1368 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · 𝑇) = ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))
135124, 134oveq12d 7153 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥)) − (𝑥 · 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
136122, 135eqtrd 2833 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) = (Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛))))))))
137136fveq2d 6649 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(𝑥 · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))))
138 rprege0 12392 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
139 absid 14648 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (abs‘𝑥) = 𝑥)
14019, 138, 1393syl 18 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘𝑥) = 𝑥)
141140oveq1d 7150 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((abs‘𝑥) · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
142121, 137, 1413eqtr3d 2841 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) = (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))))
1437nncnd 11641 . . . . . . . . . . . . . . . . 17 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℂ)
144143mulid2d 10648 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) = 𝑛)
145 rpre 12385 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
146145adantl 485 . . . . . . . . . . . . . . . . . 18 ((⊤ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
147 fznnfl 13225 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
148146, 147syl 17 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑛 ∈ (1...(⌊‘𝑥)) ↔ (𝑛 ∈ ℕ ∧ 𝑛𝑥)))
149148simplbda 503 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛𝑥)
150144, 149eqbrtrd 5052 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (1 · 𝑛) ≤ 𝑥)
15119rpred 12419 . . . . . . . . . . . . . . . 16 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
152111, 151, 126lemuldivd 12468 . . . . . . . . . . . . . . 15 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑛) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑛)))
153150, 152mpbid 235 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑛))
154 log2sumbnd 26128 . . . . . . . . . . . . . 14 (((𝑥 / 𝑛) ∈ ℝ+ ∧ 1 ≤ (𝑥 / 𝑛)) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
15526, 153, 154syl2anc 587 . . . . . . . . . . . . 13 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘(Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) − ((𝑥 / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) + (2 − (2 · (log‘(𝑥 / 𝑛)))))))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
156142, 155eqbrtrrd 5054 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2))
157108, 105, 19lemuldiv2d 12469 . . . . . . . . . . . 12 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((𝑥 · (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (((log‘(𝑥 / 𝑛))↑2) + 2) ↔ (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥)))
158156, 157mpbid 235 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇)) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
159101, 108, 106, 119, 158letrd 10786 . . . . . . . . . 10 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1605, 101, 106, 159fsumle 15146 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
1615, 105fsumrecl 15083 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℝ)
162 remulcl 10611 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 2 ∈ ℝ) → (𝑥 · 2) ∈ ℝ)
163146, 29, 162sylancl 589 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℝ)
16483, 163readdcld 10659 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) ∈ ℝ)
16528recnd 10658 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
166 2cnd 11703 . . . . . . . . . . . . . 14 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
1675, 165, 166fsumadd 15088 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2))
168 fsumconst 15137 . . . . . . . . . . . . . . . 16 (((1...(⌊‘𝑥)) ∈ Fin ∧ 2 ∈ ℂ) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
1695, 43, 168sylancl 589 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((♯‘(1...(⌊‘𝑥))) · 2))
170138adantl 485 . . . . . . . . . . . . . . . . 17 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
171 flge0nn0 13185 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (⌊‘𝑥) ∈ ℕ0)
172 hashfz1 13702 . . . . . . . . . . . . . . . . 17 ((⌊‘𝑥) ∈ ℕ0 → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
173170, 171, 1723syl 18 . . . . . . . . . . . . . . . 16 ((⊤ ∧ 𝑥 ∈ ℝ+) → (♯‘(1...(⌊‘𝑥))) = (⌊‘𝑥))
174173oveq1d 7150 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((♯‘(1...(⌊‘𝑥))) · 2) = ((⌊‘𝑥) · 2))
175169, 174eqtrd 2833 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))2 = ((⌊‘𝑥) · 2))
176175oveq2d 7151 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + Σ𝑛 ∈ (1...(⌊‘𝑥))2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
177167, 176eqtrd 2833 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) = (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)))
178 reflcl 13161 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ∈ ℝ)
179146, 178syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ∈ ℝ)
18029a1i 11 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℝ)
181179, 180remulcld 10660 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ∈ ℝ)
182 flle 13164 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ → (⌊‘𝑥) ≤ 𝑥)
183146, 182syl 17 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → (⌊‘𝑥) ≤ 𝑥)
184 2pos 11728 . . . . . . . . . . . . . . . . 17 0 < 2
18529, 184pm3.2i 474 . . . . . . . . . . . . . . . 16 (2 ∈ ℝ ∧ 0 < 2)
186185a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑥 ∈ ℝ+) → (2 ∈ ℝ ∧ 0 < 2))
187 lemul1 11481 . . . . . . . . . . . . . . 15 (((⌊‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
188179, 146, 186, 187syl3anc 1368 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) ≤ 𝑥 ↔ ((⌊‘𝑥) · 2) ≤ (𝑥 · 2)))
189183, 188mpbid 235 . . . . . . . . . . . . 13 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((⌊‘𝑥) · 2) ≤ (𝑥 · 2))
190181, 163, 83, 189leadd2dd 11244 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + ((⌊‘𝑥) · 2)) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
191177, 190eqbrtrd 5052 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) ≤ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)))
192161, 164, 23, 191lediv1dd 12477 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥))
193105recnd 10658 . . . . . . . . . . 11 (((⊤ ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) + 2) ∈ ℂ)
1945, 56, 193, 61fsumdivc 15133 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) = Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥))
19583recnd 10658 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
19656, 86mulcld 10650 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → (𝑥 · 2) ∈ ℂ)
197 divdir 11312 . . . . . . . . . . . 12 ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) ∈ ℂ ∧ (𝑥 · 2) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
198195, 196, 55, 197syl3anc 1368 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)))
19986, 56, 61divcan3d 11410 . . . . . . . . . . . 12 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((𝑥 · 2) / 𝑥) = 2)
200199oveq2d 7151 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + ((𝑥 · 2) / 𝑥)) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
201198, 200eqtrd 2833 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) + (𝑥 · 2)) / 𝑥) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
202192, 194, 2013brtr3d 5061 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((log‘(𝑥 / 𝑛))↑2) + 2) / 𝑥) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
203102, 107, 97, 160, 202letrd 10786 . . . . . . . 8 ((⊤ ∧ 𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(abs‘((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20498, 102, 97, 103, 203letrd 10786 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2))
20597leabsd 14766 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20698, 97, 100, 204, 205letrd 10786 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℝ+) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
207206adantrr 716 . . . . 5 ((⊤ ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑛))↑2) / 𝑥) + 2)))
20882, 95, 97, 40, 207o1le 15001 . . . 4 (⊤ → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1))
20922selberglem1 26129 . . . 4 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
210 o1add 14962 . . . 4 (((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∈ 𝑂(1) ∧ (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥)))) ∈ 𝑂(1)) → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘f + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
211208, 209, 210sylancl 589 . . 3 (⊤ → ((𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · ((Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((log‘𝑚)↑2) / 𝑥) − 𝑇))) ∘f + (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) · 𝑇) − (2 · (log‘𝑥))))) ∈ 𝑂(1))
21281, 211eqeltrrd 2891 . 2 (⊤ → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
213212mptru 1545 1 (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))Σ𝑚 ∈ (1...(⌊‘(𝑥 / 𝑛)))((μ‘𝑛) · ((log‘𝑚)↑2)) / 𝑥) − (2 · (log‘𝑥)))) ∈ 𝑂(1)
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1084   = wceq 1538  wtru 1539  wcel 2111  wne 2987  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  f cof 7387  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  +crp 12377  ...cfz 12885  cfl 13155  cexp 13425  !cfa 13629  chash 13686  abscabs 14585  𝑟 crli 14834  𝑂(1)co1 14835  Σcsu 15034  logclog 25146  μcmu 25680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578  df-mu 25686
This theorem is referenced by:  selberglem3  26131  selberg  26132
  Copyright terms: Public domain W3C validator