MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmoniclbnd Structured version   Visualization version   GIF version

Theorem harmoniclbnd 26263
Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
harmoniclbnd (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
Distinct variable group:   𝐴,𝑚

Proof of Theorem harmoniclbnd
StepHypRef Expression
1 relogcl 25836 . 2 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
2 rprege0 12850 . . . . . 6 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
3 flge0nn0 13645 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (⌊‘𝐴) ∈ ℕ0)
42, 3syl 17 . . . . 5 (𝐴 ∈ ℝ+ → (⌊‘𝐴) ∈ ℕ0)
5 nn0p1nn 12377 . . . . 5 ((⌊‘𝐴) ∈ ℕ0 → ((⌊‘𝐴) + 1) ∈ ℕ)
64, 5syl 17 . . . 4 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℕ)
76nnrpd 12875 . . 3 (𝐴 ∈ ℝ+ → ((⌊‘𝐴) + 1) ∈ ℝ+)
8 relogcl 25836 . . 3 (((⌊‘𝐴) + 1) ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
97, 8syl 17 . 2 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ∈ ℝ)
10 fzfid 13798 . . 3 (𝐴 ∈ ℝ+ → (1...(⌊‘𝐴)) ∈ Fin)
11 elfznn 13390 . . . . 5 (𝑚 ∈ (1...(⌊‘𝐴)) → 𝑚 ∈ ℕ)
1211adantl 483 . . . 4 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → 𝑚 ∈ ℕ)
1312nnrecred 12129 . . 3 ((𝐴 ∈ ℝ+𝑚 ∈ (1...(⌊‘𝐴))) → (1 / 𝑚) ∈ ℝ)
1410, 13fsumrecl 15545 . 2 (𝐴 ∈ ℝ+ → Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) ∈ ℝ)
15 rpre 12843 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
16 fllep1 13626 . . . 4 (𝐴 ∈ ℝ → 𝐴 ≤ ((⌊‘𝐴) + 1))
1715, 16syl 17 . . 3 (𝐴 ∈ ℝ+𝐴 ≤ ((⌊‘𝐴) + 1))
18 id 22 . . . 4 (𝐴 ∈ ℝ+𝐴 ∈ ℝ+)
1918, 7logled 25887 . . 3 (𝐴 ∈ ℝ+ → (𝐴 ≤ ((⌊‘𝐴) + 1) ↔ (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1))))
2017, 19mpbid 231 . 2 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ (log‘((⌊‘𝐴) + 1)))
21 harmonicbnd3 26262 . . . . 5 ((⌊‘𝐴) ∈ ℕ0 → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
224, 21syl 17 . . . 4 (𝐴 ∈ ℝ+ → (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ))
23 0re 11082 . . . . . 6 0 ∈ ℝ
24 emre 26260 . . . . . 6 γ ∈ ℝ
2523, 24elicc2i 13250 . . . . 5 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) ↔ ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ ℝ ∧ 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∧ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ≤ γ))
2625simp2bi 1146 . . . 4 ((Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ∈ (0[,]γ) → 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
2722, 26syl 17 . . 3 (𝐴 ∈ ℝ+ → 0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))))
2814, 9subge0d 11670 . . 3 (𝐴 ∈ ℝ+ → (0 ≤ (Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚) − (log‘((⌊‘𝐴) + 1))) ↔ (log‘((⌊‘𝐴) + 1)) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚)))
2927, 28mpbid 231 . 2 (𝐴 ∈ ℝ+ → (log‘((⌊‘𝐴) + 1)) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
301, 9, 14, 20, 29letrd 11237 1 (𝐴 ∈ ℝ+ → (log‘𝐴) ≤ Σ𝑚 ∈ (1...(⌊‘𝐴))(1 / 𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wcel 2106   class class class wbr 5096  cfv 6483  (class class class)co 7341  cr 10975  0cc0 10976  1c1 10977   + caddc 10979  cle 11115  cmin 11310   / cdiv 11737  cn 12078  0cn0 12338  +crp 12835  [,]cicc 13187  ...cfz 13344  cfl 13615  Σcsu 15496  logclog 25815  γcem 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054  ax-addf 11055  ax-mulf 11056
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-map 8692  df-pm 8693  df-ixp 8761  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-fi 9272  df-sup 9303  df-inf 9304  df-oi 9371  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-xnn0 12411  df-z 12425  df-dec 12543  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xadd 12954  df-xmul 12955  df-ioo 13188  df-ioc 13189  df-ico 13190  df-icc 13191  df-fz 13345  df-fzo 13488  df-fl 13617  df-mod 13695  df-seq 13827  df-exp 13888  df-fac 14093  df-bc 14122  df-hash 14150  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-e 15877  df-sin 15878  df-cos 15879  df-tan 15880  df-pi 15881  df-dvds 16063  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20694  df-xmet 20695  df-met 20696  df-bl 20697  df-mopn 20698  df-fbas 20699  df-fg 20700  df-cnfld 20703  df-top 22148  df-topon 22165  df-topsp 22187  df-bases 22201  df-cld 22275  df-ntr 22276  df-cls 22277  df-nei 22354  df-lp 22392  df-perf 22393  df-cn 22483  df-cnp 22484  df-haus 22571  df-cmp 22643  df-tx 22818  df-hmeo 23011  df-fil 23102  df-fm 23194  df-flim 23195  df-flf 23196  df-xms 23578  df-ms 23579  df-tms 23580  df-cncf 24146  df-limc 25135  df-dv 25136  df-ulm 25641  df-log 25817  df-atan 26122  df-em 26247
This theorem is referenced by:  fsumharmonic  26266  logfaclbnd  26475  dchrisum0fno1  26764  vmalogdivsum2  26791  pntrsumo1  26818  pntrlog2bndlem6  26836
  Copyright terms: Public domain W3C validator