![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliincl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliincl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliincl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliincl.kn0 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
saliincl.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliincl | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑘𝜑 | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑘𝑆 | |
3 | nfcv 2908 | . 2 ⊢ Ⅎ𝑘𝐾 | |
4 | saliincl.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
5 | saliincl.kct | . 2 ⊢ (𝜑 → 𝐾 ≼ ω) | |
6 | saliincl.kn0 | . 2 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
7 | saliincl.e | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
8 | 1, 2, 3, 4, 5, 6, 7 | saliinclf 46247 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 ∩ ciin 5016 class class class wbr 5166 ωcom 7903 ≼ cdom 9001 SAlgcsalg 46229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-card 10008 df-acn 10011 df-salg 46230 |
This theorem is referenced by: iocborel 46277 hoimbllem 46551 iccvonmbllem 46599 salpreimagtge 46646 salpreimaltle 46647 smflimlem1 46692 smfsuplem1 46732 |
Copyright terms: Public domain | W3C validator |