Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliincl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliincl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliincl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliincl.kn0 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
saliincl.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliincl | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliincl.e | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | elssuni 4868 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ⊆ ∪ 𝑆) |
4 | df-ss 3900 | . . . . . . 7 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
6 | 5 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (𝐸 ∩ ∪ 𝑆)) |
7 | incom 4131 | . . . . . 6 ⊢ (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸)) |
9 | dfin4 4198 | . . . . . 6 ⊢ (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
11 | 6, 8, 10 | 3eqtrd 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
12 | 11 | iineq2dv 4946 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
13 | saliincl.kn0 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
14 | iindif2 5002 | . . . 4 ⊢ (𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
16 | 12, 15 | eqtrd 2778 | . 2 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
17 | saliincl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
18 | saliincl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
19 | 17 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑆 ∈ SAlg) |
20 | saldifcl 43750 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
21 | 19, 1, 20 | syl2anc 583 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
22 | 17, 18, 21 | saliuncl 43753 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
23 | saldifcl 43750 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) | |
24 | 17, 22, 23 | syl2anc 583 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) |
25 | 16, 24 | eqeltrd 2839 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 ∪ cuni 4836 ∪ ciun 4921 ∩ ciin 4922 class class class wbr 5070 ωcom 7687 ≼ cdom 8689 SAlgcsalg 43739 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-card 9628 df-acn 9631 df-salg 43740 |
This theorem is referenced by: iocborel 43785 hoimbllem 44058 iccvonmbllem 44106 salpreimagtge 44148 salpreimaltle 44149 smflimlem1 44193 smfsuplem1 44231 |
Copyright terms: Public domain | W3C validator |