Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > saliincl | Structured version Visualization version GIF version |
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
saliincl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
saliincl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
saliincl.kn0 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
saliincl.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
Ref | Expression |
---|---|
saliincl | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | saliincl.e | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
2 | elssuni 4871 | . . . . . . . 8 ⊢ (𝐸 ∈ 𝑆 → 𝐸 ⊆ ∪ 𝑆) | |
3 | 1, 2 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ⊆ ∪ 𝑆) |
4 | df-ss 3904 | . . . . . . 7 ⊢ (𝐸 ⊆ ∪ 𝑆 ↔ (𝐸 ∩ ∪ 𝑆) = 𝐸) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = 𝐸) |
6 | 5 | eqcomd 2744 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (𝐸 ∩ ∪ 𝑆)) |
7 | incom 4135 | . . . . . 6 ⊢ (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸) | |
8 | 7 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (𝐸 ∩ ∪ 𝑆) = (∪ 𝑆 ∩ 𝐸)) |
9 | dfin4 4201 | . . . . . 6 ⊢ (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) | |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∩ 𝐸) = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
11 | 6, 8, 10 | 3eqtrd 2782 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 = (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
12 | 11 | iineq2dv 4949 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸))) |
13 | saliincl.kn0 | . . . 4 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
14 | iindif2 5006 | . . . 4 ⊢ (𝐾 ≠ ∅ → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ (∪ 𝑆 ∖ 𝐸)) = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
16 | 12, 15 | eqtrd 2778 | . 2 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 = (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸))) |
17 | saliincl.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
18 | saliincl.kct | . . . 4 ⊢ (𝜑 → 𝐾 ≼ ω) | |
19 | 17 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝑆 ∈ SAlg) |
20 | saldifcl 43860 | . . . . 5 ⊢ ((𝑆 ∈ SAlg ∧ 𝐸 ∈ 𝑆) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | |
21 | 19, 1, 20 | syl2anc 584 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
22 | 17, 18, 21 | saliuncl 43863 | . . 3 ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) |
23 | saldifcl 43860 | . . 3 ⊢ ((𝑆 ∈ SAlg ∧ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) | |
24 | 17, 22, 23 | syl2anc 584 | . 2 ⊢ (𝜑 → (∪ 𝑆 ∖ ∪ 𝑘 ∈ 𝐾 (∪ 𝑆 ∖ 𝐸)) ∈ 𝑆) |
25 | 16, 24 | eqeltrd 2839 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 ∪ cuni 4839 ∪ ciun 4924 ∩ ciin 4925 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 SAlgcsalg 43849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-card 9697 df-acn 9700 df-salg 43850 |
This theorem is referenced by: iocborel 43895 hoimbllem 44168 iccvonmbllem 44216 salpreimagtge 44261 salpreimaltle 44262 smflimlem1 44306 smfsuplem1 44344 |
Copyright terms: Public domain | W3C validator |