Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  saliincl Structured version   Visualization version   GIF version

Theorem saliincl 43866
Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
saliincl.s (𝜑𝑆 ∈ SAlg)
saliincl.kct (𝜑𝐾 ≼ ω)
saliincl.kn0 (𝜑𝐾 ≠ ∅)
saliincl.e ((𝜑𝑘𝐾) → 𝐸𝑆)
Assertion
Ref Expression
saliincl (𝜑 𝑘𝐾 𝐸𝑆)
Distinct variable groups:   𝑘,𝐾   𝑆,𝑘   𝜑,𝑘
Allowed substitution hint:   𝐸(𝑘)

Proof of Theorem saliincl
StepHypRef Expression
1 saliincl.e . . . . . . . 8 ((𝜑𝑘𝐾) → 𝐸𝑆)
2 elssuni 4871 . . . . . . . 8 (𝐸𝑆𝐸 𝑆)
31, 2syl 17 . . . . . . 7 ((𝜑𝑘𝐾) → 𝐸 𝑆)
4 df-ss 3904 . . . . . . 7 (𝐸 𝑆 ↔ (𝐸 𝑆) = 𝐸)
53, 4sylib 217 . . . . . 6 ((𝜑𝑘𝐾) → (𝐸 𝑆) = 𝐸)
65eqcomd 2744 . . . . 5 ((𝜑𝑘𝐾) → 𝐸 = (𝐸 𝑆))
7 incom 4135 . . . . . 6 (𝐸 𝑆) = ( 𝑆𝐸)
87a1i 11 . . . . 5 ((𝜑𝑘𝐾) → (𝐸 𝑆) = ( 𝑆𝐸))
9 dfin4 4201 . . . . . 6 ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸))
109a1i 11 . . . . 5 ((𝜑𝑘𝐾) → ( 𝑆𝐸) = ( 𝑆 ∖ ( 𝑆𝐸)))
116, 8, 103eqtrd 2782 . . . 4 ((𝜑𝑘𝐾) → 𝐸 = ( 𝑆 ∖ ( 𝑆𝐸)))
1211iineq2dv 4949 . . 3 (𝜑 𝑘𝐾 𝐸 = 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)))
13 saliincl.kn0 . . . 4 (𝜑𝐾 ≠ ∅)
14 iindif2 5006 . . . 4 (𝐾 ≠ ∅ → 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1513, 14syl 17 . . 3 (𝜑 𝑘𝐾 ( 𝑆 ∖ ( 𝑆𝐸)) = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
1612, 15eqtrd 2778 . 2 (𝜑 𝑘𝐾 𝐸 = ( 𝑆 𝑘𝐾 ( 𝑆𝐸)))
17 saliincl.s . . 3 (𝜑𝑆 ∈ SAlg)
18 saliincl.kct . . . 4 (𝜑𝐾 ≼ ω)
1917adantr 481 . . . . 5 ((𝜑𝑘𝐾) → 𝑆 ∈ SAlg)
20 saldifcl 43860 . . . . 5 ((𝑆 ∈ SAlg ∧ 𝐸𝑆) → ( 𝑆𝐸) ∈ 𝑆)
2119, 1, 20syl2anc 584 . . . 4 ((𝜑𝑘𝐾) → ( 𝑆𝐸) ∈ 𝑆)
2217, 18, 21saliuncl 43863 . . 3 (𝜑 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆)
23 saldifcl 43860 . . 3 ((𝑆 ∈ SAlg ∧ 𝑘𝐾 ( 𝑆𝐸) ∈ 𝑆) → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2417, 22, 23syl2anc 584 . 2 (𝜑 → ( 𝑆 𝑘𝐾 ( 𝑆𝐸)) ∈ 𝑆)
2516, 24eqeltrd 2839 1 (𝜑 𝑘𝐾 𝐸𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  cdif 3884  cin 3886  wss 3887  c0 4256   cuni 4839   ciun 4924   ciin 4925   class class class wbr 5074  ωcom 7712  cdom 8731  SAlgcsalg 43849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-card 9697  df-acn 9700  df-salg 43850
This theorem is referenced by:  iocborel  43895  hoimbllem  44168  iccvonmbllem  44216  salpreimagtge  44261  salpreimaltle  44262  smflimlem1  44306  smfsuplem1  44344
  Copyright terms: Public domain W3C validator