| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > saliincl | Structured version Visualization version GIF version | ||
| Description: SAlg sigma-algebra is closed under countable indexed intersection. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| saliincl.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| saliincl.kct | ⊢ (𝜑 → 𝐾 ≼ ω) |
| saliincl.kn0 | ⊢ (𝜑 → 𝐾 ≠ ∅) |
| saliincl.e | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) |
| Ref | Expression |
|---|---|
| saliincl | ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . 2 ⊢ Ⅎ𝑘𝜑 | |
| 2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑘𝑆 | |
| 3 | nfcv 2904 | . 2 ⊢ Ⅎ𝑘𝐾 | |
| 4 | saliincl.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 5 | saliincl.kct | . 2 ⊢ (𝜑 → 𝐾 ≼ ω) | |
| 6 | saliincl.kn0 | . 2 ⊢ (𝜑 → 𝐾 ≠ ∅) | |
| 7 | saliincl.e | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐾) → 𝐸 ∈ 𝑆) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | saliinclf 46346 | 1 ⊢ (𝜑 → ∩ 𝑘 ∈ 𝐾 𝐸 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 ∩ ciin 4991 class class class wbr 5142 ωcom 7888 ≼ cdom 8984 SAlgcsalg 46328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-card 9980 df-acn 9983 df-salg 46329 |
| This theorem is referenced by: iocborel 46376 hoimbllem 46650 iccvonmbllem 46698 salpreimagtge 46745 salpreimaltle 46746 smflimlem1 46791 smfsuplem1 46831 |
| Copyright terms: Public domain | W3C validator |