Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version |
Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1rr | ⊢ -1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11003 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | renegcli 11310 | 1 ⊢ -1 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2101 ℝcr 10898 1c1 10900 -cneg 11234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-ltxr 11042 df-sub 11235 df-neg 11236 |
This theorem is referenced by: dfceil2 13587 bernneq 13972 crre 14853 remim 14856 iseraltlem2 15422 iseraltlem3 15423 iseralt 15424 tanhbnd 15898 sinbnd2 15919 cosbnd2 15920 psgnodpmr 20823 xrhmeo 24137 xrhmph 24138 vitalilem2 24801 vitalilem4 24803 vitali 24805 mbfneg 24842 i1fsub 24901 itg1sub 24902 i1fibl 25000 itgitg1 25001 cos0pilt1 25716 recosf1o 25719 efif1olem3 25728 relogbdiv 25957 ang180lem3 25989 1cubrlem 26019 atanre 26063 acosrecl 26081 atandmcj 26087 leibpilem2 26119 leibpi 26120 leibpisum 26121 wilthlem1 26245 wilthlem2 26246 basellem3 26260 zabsle1 26472 lgsvalmod 26492 lgsdir2lem4 26504 gausslemma2dlem6 26548 lgseisen 26555 ostth3 26814 axlowdimlem7 27344 ipidsq 29100 ipasslem10 29229 hisubcomi 29494 normlem9 29508 hmopd 30412 sgnclre 32534 sgnnbi 32540 sgnpbi 32541 sgnsgn 32543 signswch 32568 signstf 32573 signsvfn 32589 subfacval2 33177 iexpire 33729 bcneg1 33730 cnndvlem1 34745 irrdiff 35525 ftc1anclem5 35882 asindmre 35888 dvasin 35889 dvacos 35890 dvreasin 35891 dvreacos 35892 areacirclem1 35893 2xp3dxp2ge1d 40188 sqrtcval 41273 sqrtcval2 41274 resqrtval 41275 imsqrtval 41276 stoweidlem22 43598 etransclem46 43856 smfneg 44377 3exp4mod41 45108 |
Copyright terms: Public domain | W3C validator |