| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version | ||
| Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1rr | ⊢ -1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11150 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | renegcli 11459 | 1 ⊢ -1 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11043 1c1 11045 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: inelr 12152 dfceil2 13777 bernneq 14170 crre 15056 remim 15059 iseraltlem2 15625 iseraltlem3 15626 iseralt 15627 tanhbnd 16105 sinbnd2 16126 cosbnd2 16127 psgnodpmr 21475 xrhmeo 24820 xrhmph 24821 vitalilem2 25486 vitalilem4 25488 vitali 25490 mbfneg 25527 i1fsub 25585 itg1sub 25586 i1fibl 25685 itgitg1 25686 cos0pilt1 26417 recosf1o 26420 efif1olem3 26429 relogbdiv 26665 ang180lem3 26697 1cubrlem 26727 atanre 26771 acosrecl 26789 atandmcj 26795 leibpilem2 26827 leibpi 26828 leibpisum 26829 wilthlem1 26954 wilthlem2 26955 basellem3 26969 zabsle1 27183 lgsvalmod 27203 lgsdir2lem4 27215 gausslemma2dlem6 27259 lgseisen 27266 ostth3 27525 axlowdimlem7 28851 ipidsq 30612 ipasslem10 30741 hisubcomi 31006 normlem9 31020 hmopd 31924 sgnclre 32730 sgnnbi 32736 sgnpbi 32737 sgnsgn 32739 chnub 32911 cos9thpiminplylem1 33745 signswch 34525 signstf 34530 signsvfn 34546 subfacval2 35147 iexpire 35695 bcneg1 35696 cnndvlem1 36498 irrdiff 37287 ftc1anclem5 37664 asindmre 37670 dvasin 37671 dvacos 37672 dvreasin 37673 dvreacos 37674 areacirclem1 37675 sqrtcval 43603 sqrtcval2 43604 resqrtval 43605 imsqrtval 43606 stoweidlem22 45993 etransclem46 46251 smfneg 46774 3exp4mod41 47590 |
| Copyright terms: Public domain | W3C validator |