| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version | ||
| Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1rr | ⊢ -1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11123 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | renegcli 11433 | 1 ⊢ -1 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 ℝcr 11016 1c1 11018 -cneg 11356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-ltxr 11162 df-sub 11357 df-neg 11358 |
| This theorem is referenced by: inelr 12126 dfceil2 13750 bernneq 14143 crre 15028 remim 15031 iseraltlem2 15597 iseraltlem3 15598 iseralt 15599 tanhbnd 16077 sinbnd2 16098 cosbnd2 16099 chnub 18536 psgnodpmr 21536 xrhmeo 24891 xrhmph 24892 vitalilem2 25557 vitalilem4 25559 vitali 25561 mbfneg 25598 i1fsub 25656 itg1sub 25657 i1fibl 25756 itgitg1 25757 cos0pilt1 26488 recosf1o 26491 efif1olem3 26500 relogbdiv 26736 ang180lem3 26768 1cubrlem 26798 atanre 26842 acosrecl 26860 atandmcj 26866 leibpilem2 26898 leibpi 26899 leibpisum 26900 wilthlem1 27025 wilthlem2 27026 basellem3 27040 zabsle1 27254 lgsvalmod 27274 lgsdir2lem4 27286 gausslemma2dlem6 27330 lgseisen 27337 ostth3 27596 axlowdimlem7 28947 ipidsq 30711 ipasslem10 30840 hisubcomi 31105 normlem9 31119 hmopd 32023 sgnclre 32841 sgnnbi 32847 sgnpbi 32848 sgnsgn 32850 cos9thpiminplylem1 33867 signswch 34646 signstf 34651 signsvfn 34667 subfacval2 35303 iexpire 35851 bcneg1 35852 cnndvlem1 36653 irrdiff 37443 ftc1anclem5 37810 asindmre 37816 dvasin 37817 dvacos 37818 dvreasin 37819 dvreacos 37820 areacirclem1 37821 sqrtcval 43798 sqrtcval2 43799 resqrtval 43800 imsqrtval 43801 stoweidlem22 46182 etransclem46 46440 smfneg 46963 3exp4mod41 47778 |
| Copyright terms: Public domain | W3C validator |