![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version |
Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1rr | ⊢ -1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11290 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | renegcli 11597 | 1 ⊢ -1 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℝcr 11183 1c1 11185 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: dfceil2 13890 bernneq 14278 crre 15163 remim 15166 iseraltlem2 15731 iseraltlem3 15732 iseralt 15733 tanhbnd 16209 sinbnd2 16230 cosbnd2 16231 psgnodpmr 21631 xrhmeo 24996 xrhmph 24997 vitalilem2 25663 vitalilem4 25665 vitali 25667 mbfneg 25704 i1fsub 25763 itg1sub 25764 i1fibl 25863 itgitg1 25864 cos0pilt1 26592 recosf1o 26595 efif1olem3 26604 relogbdiv 26840 ang180lem3 26872 1cubrlem 26902 atanre 26946 acosrecl 26964 atandmcj 26970 leibpilem2 27002 leibpi 27003 leibpisum 27004 wilthlem1 27129 wilthlem2 27130 basellem3 27144 zabsle1 27358 lgsvalmod 27378 lgsdir2lem4 27390 gausslemma2dlem6 27434 lgseisen 27441 ostth3 27700 axlowdimlem7 28981 ipidsq 30742 ipasslem10 30871 hisubcomi 31136 normlem9 31150 hmopd 32054 chnub 32984 sgnclre 34504 sgnnbi 34510 sgnpbi 34511 sgnsgn 34513 signswch 34538 signstf 34543 signsvfn 34559 subfacval2 35155 iexpire 35697 bcneg1 35698 cnndvlem1 36503 irrdiff 37292 ftc1anclem5 37657 asindmre 37663 dvasin 37664 dvacos 37665 dvreasin 37666 dvreacos 37667 areacirclem1 37668 2xp3dxp2ge1d 42198 sqrtcval 43603 sqrtcval2 43604 resqrtval 43605 imsqrtval 43606 stoweidlem22 45943 etransclem46 46201 smfneg 46724 3exp4mod41 47490 |
Copyright terms: Public domain | W3C validator |