| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version | ||
| Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1rr | ⊢ -1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11181 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | renegcli 11490 | 1 ⊢ -1 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ℝcr 11074 1c1 11076 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: inelr 12183 dfceil2 13808 bernneq 14201 crre 15087 remim 15090 iseraltlem2 15656 iseraltlem3 15657 iseralt 15658 tanhbnd 16136 sinbnd2 16157 cosbnd2 16158 psgnodpmr 21506 xrhmeo 24851 xrhmph 24852 vitalilem2 25517 vitalilem4 25519 vitali 25521 mbfneg 25558 i1fsub 25616 itg1sub 25617 i1fibl 25716 itgitg1 25717 cos0pilt1 26448 recosf1o 26451 efif1olem3 26460 relogbdiv 26696 ang180lem3 26728 1cubrlem 26758 atanre 26802 acosrecl 26820 atandmcj 26826 leibpilem2 26858 leibpi 26859 leibpisum 26860 wilthlem1 26985 wilthlem2 26986 basellem3 27000 zabsle1 27214 lgsvalmod 27234 lgsdir2lem4 27246 gausslemma2dlem6 27290 lgseisen 27297 ostth3 27556 axlowdimlem7 28882 ipidsq 30646 ipasslem10 30775 hisubcomi 31040 normlem9 31054 hmopd 31958 sgnclre 32764 sgnnbi 32770 sgnpbi 32771 sgnsgn 32773 chnub 32945 cos9thpiminplylem1 33779 signswch 34559 signstf 34564 signsvfn 34580 subfacval2 35181 iexpire 35729 bcneg1 35730 cnndvlem1 36532 irrdiff 37321 ftc1anclem5 37698 asindmre 37704 dvasin 37705 dvacos 37706 dvreasin 37707 dvreacos 37708 areacirclem1 37709 sqrtcval 43637 sqrtcval2 43638 resqrtval 43639 imsqrtval 43640 stoweidlem22 46027 etransclem46 46285 smfneg 46808 3exp4mod41 47621 |
| Copyright terms: Public domain | W3C validator |