| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version | ||
| Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1rr | ⊢ -1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11235 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | renegcli 11544 | 1 ⊢ -1 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ℝcr 11128 1c1 11130 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: dfceil2 13856 bernneq 14247 crre 15133 remim 15136 iseraltlem2 15699 iseraltlem3 15700 iseralt 15701 tanhbnd 16179 sinbnd2 16200 cosbnd2 16201 psgnodpmr 21550 xrhmeo 24895 xrhmph 24896 vitalilem2 25562 vitalilem4 25564 vitali 25566 mbfneg 25603 i1fsub 25661 itg1sub 25662 i1fibl 25761 itgitg1 25762 cos0pilt1 26493 recosf1o 26496 efif1olem3 26505 relogbdiv 26741 ang180lem3 26773 1cubrlem 26803 atanre 26847 acosrecl 26865 atandmcj 26871 leibpilem2 26903 leibpi 26904 leibpisum 26905 wilthlem1 27030 wilthlem2 27031 basellem3 27045 zabsle1 27259 lgsvalmod 27279 lgsdir2lem4 27291 gausslemma2dlem6 27335 lgseisen 27342 ostth3 27601 axlowdimlem7 28927 ipidsq 30691 ipasslem10 30820 hisubcomi 31085 normlem9 31099 hmopd 32003 sgnclre 32811 sgnnbi 32817 sgnpbi 32818 sgnsgn 32820 chnub 32992 cos9thpiminplylem1 33816 signswch 34593 signstf 34598 signsvfn 34614 subfacval2 35209 iexpire 35752 bcneg1 35753 cnndvlem1 36555 irrdiff 37344 ftc1anclem5 37721 asindmre 37727 dvasin 37728 dvacos 37729 dvreasin 37730 dvreacos 37731 areacirclem1 37732 2xp3dxp2ge1d 42254 sqrtcval 43665 sqrtcval2 43666 resqrtval 43667 imsqrtval 43668 stoweidlem22 46051 etransclem46 46309 smfneg 46832 3exp4mod41 47630 |
| Copyright terms: Public domain | W3C validator |