![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version |
Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1rr | ⊢ -1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 11259 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | renegcli 11568 | 1 ⊢ -1 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ℝcr 11152 1c1 11154 -cneg 11491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 |
This theorem is referenced by: dfceil2 13876 bernneq 14265 crre 15150 remim 15153 iseraltlem2 15716 iseraltlem3 15717 iseralt 15718 tanhbnd 16194 sinbnd2 16215 cosbnd2 16216 psgnodpmr 21626 xrhmeo 24991 xrhmph 24992 vitalilem2 25658 vitalilem4 25660 vitali 25662 mbfneg 25699 i1fsub 25758 itg1sub 25759 i1fibl 25858 itgitg1 25859 cos0pilt1 26589 recosf1o 26592 efif1olem3 26601 relogbdiv 26837 ang180lem3 26869 1cubrlem 26899 atanre 26943 acosrecl 26961 atandmcj 26967 leibpilem2 26999 leibpi 27000 leibpisum 27001 wilthlem1 27126 wilthlem2 27127 basellem3 27141 zabsle1 27355 lgsvalmod 27375 lgsdir2lem4 27387 gausslemma2dlem6 27431 lgseisen 27438 ostth3 27697 axlowdimlem7 28978 ipidsq 30739 ipasslem10 30868 hisubcomi 31133 normlem9 31147 hmopd 32051 chnub 32986 sgnclre 34521 sgnnbi 34527 sgnpbi 34528 sgnsgn 34530 signswch 34555 signstf 34560 signsvfn 34576 subfacval2 35172 iexpire 35715 bcneg1 35716 cnndvlem1 36520 irrdiff 37309 ftc1anclem5 37684 asindmre 37690 dvasin 37691 dvacos 37692 dvreasin 37693 dvreacos 37694 areacirclem1 37695 2xp3dxp2ge1d 42223 sqrtcval 43631 sqrtcval2 43632 resqrtval 43633 imsqrtval 43634 stoweidlem22 45978 etransclem46 46236 smfneg 46759 3exp4mod41 47541 |
Copyright terms: Public domain | W3C validator |