| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version | ||
| Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1rr | ⊢ -1 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 11107 | . 2 ⊢ 1 ∈ ℝ | |
| 2 | 1 | renegcli 11417 | 1 ⊢ -1 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ℝcr 11000 1c1 11002 -cneg 11340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 |
| This theorem is referenced by: inelr 12110 dfceil2 13738 bernneq 14131 crre 15016 remim 15019 iseraltlem2 15585 iseraltlem3 15586 iseralt 15587 tanhbnd 16065 sinbnd2 16086 cosbnd2 16087 chnub 18523 psgnodpmr 21522 xrhmeo 24866 xrhmph 24867 vitalilem2 25532 vitalilem4 25534 vitali 25536 mbfneg 25573 i1fsub 25631 itg1sub 25632 i1fibl 25731 itgitg1 25732 cos0pilt1 26463 recosf1o 26466 efif1olem3 26475 relogbdiv 26711 ang180lem3 26743 1cubrlem 26773 atanre 26817 acosrecl 26835 atandmcj 26841 leibpilem2 26873 leibpi 26874 leibpisum 26875 wilthlem1 27000 wilthlem2 27001 basellem3 27015 zabsle1 27229 lgsvalmod 27249 lgsdir2lem4 27261 gausslemma2dlem6 27305 lgseisen 27312 ostth3 27571 axlowdimlem7 28921 ipidsq 30682 ipasslem10 30811 hisubcomi 31076 normlem9 31090 hmopd 31994 sgnclre 32807 sgnnbi 32813 sgnpbi 32814 sgnsgn 32816 cos9thpiminplylem1 33787 signswch 34566 signstf 34571 signsvfn 34587 subfacval2 35223 iexpire 35771 bcneg1 35772 cnndvlem1 36571 irrdiff 37360 ftc1anclem5 37737 asindmre 37743 dvasin 37744 dvacos 37745 dvreasin 37746 dvreacos 37747 areacirclem1 37748 sqrtcval 43674 sqrtcval2 43675 resqrtval 43676 imsqrtval 43677 stoweidlem22 46060 etransclem46 46318 smfneg 46841 3exp4mod41 47647 |
| Copyright terms: Public domain | W3C validator |