Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neg1rr | Structured version Visualization version GIF version |
Description: -1 is a real number. (Contributed by David A. Wheeler, 5-Dec-2018.) |
Ref | Expression |
---|---|
neg1rr | ⊢ -1 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 10906 | . 2 ⊢ 1 ∈ ℝ | |
2 | 1 | renegcli 11212 | 1 ⊢ -1 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ℝcr 10801 1c1 10803 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 |
This theorem is referenced by: dfceil2 13487 bernneq 13872 crre 14753 remim 14756 iseraltlem2 15322 iseraltlem3 15323 iseralt 15324 tanhbnd 15798 sinbnd2 15819 cosbnd2 15820 psgnodpmr 20707 xrhmeo 24015 xrhmph 24016 vitalilem2 24678 vitalilem4 24680 vitali 24682 mbfneg 24719 i1fsub 24778 itg1sub 24779 i1fibl 24877 itgitg1 24878 cos0pilt1 25593 recosf1o 25596 efif1olem3 25605 relogbdiv 25834 ang180lem3 25866 1cubrlem 25896 atanre 25940 acosrecl 25958 atandmcj 25964 leibpilem2 25996 leibpi 25997 leibpisum 25998 wilthlem1 26122 wilthlem2 26123 basellem3 26137 zabsle1 26349 lgsvalmod 26369 lgsdir2lem4 26381 gausslemma2dlem6 26425 lgseisen 26432 ostth3 26691 axlowdimlem7 27219 ipidsq 28973 ipasslem10 29102 hisubcomi 29367 normlem9 29381 hmopd 30285 sgnclre 32406 sgnnbi 32412 sgnpbi 32413 sgnsgn 32415 signswch 32440 signstf 32445 signsvfn 32461 subfacval2 33049 iexpire 33607 bcneg1 33608 cnndvlem1 34644 irrdiff 35424 ftc1anclem5 35781 asindmre 35787 dvasin 35788 dvacos 35789 dvreasin 35790 dvreacos 35791 areacirclem1 35792 2xp3dxp2ge1d 40090 sqrtcval 41138 sqrtcval2 41139 resqrtval 41140 imsqrtval 41141 stoweidlem22 43453 etransclem46 43711 smfneg 44224 3exp4mod41 44956 |
Copyright terms: Public domain | W3C validator |