MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdstr Structured version   Visualization version   GIF version

Theorem pcdvdstr 16790
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 12486 . . . . . . 7 0 ∈ ℤ
2 zq 12854 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . . . . . 6 0 ∈ ℚ
4 pcxcl 16775 . . . . . 6 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*)
53, 4mpan2 691 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*)
65xrleidd 13053 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
76ad2antrr 726 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
8 simpr 484 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
98oveq2d 7368 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
10 simplr3 1218 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴𝐵)
118, 10eqbrtrrd 5117 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵)
12 simplr2 1217 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ)
13 0dvds 16189 . . . . . 6 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1412, 13syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵𝐵 = 0))
1511, 14mpbid 232 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0)
1615oveq2d 7368 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0))
177, 9, 163brtr4d 5125 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
18 prmnn 16587 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1918ad2antrr 726 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ)
20 simpll 766 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ)
21 simplr1 1216 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
22 simpr 484 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
23 pczcl 16762 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2420, 21, 22, 23syl12anc 836 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2519, 24nnexpcld 14154 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
2625nnzd 12501 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
27 simplr2 1217 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ)
28 pczdvds 16777 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
2920, 21, 22, 28syl12anc 836 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
30 simplr3 1218 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴𝐵)
3126, 21, 27, 29, 30dvdstrd 16208 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
32 pcdvdsb 16783 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3320, 27, 24, 32syl3anc 1373 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3431, 33mpbird 257 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
3517, 34pm2.61dane 3016 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5093  (class class class)co 7352  0cc0 11013  *cxr 11152  cle 11154  cn 12132  0cn0 12388  cz 12475  cq 12848  cexp 13970  cdvds 16165  cprime 16584   pCnt cpc 16750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-pc 16751
This theorem is referenced by:  pcgcd1  16791  pc2dvds  16793  dvdsppwf1o  27124
  Copyright terms: Public domain W3C validator