MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pcdvdstr Structured version   Visualization version   GIF version

Theorem pcdvdstr 16202
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
pcdvdstr ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))

Proof of Theorem pcdvdstr
StepHypRef Expression
1 0z 11980 . . . . . . 7 0 ∈ ℤ
2 zq 12342 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
31, 2ax-mp 5 . . . . . 6 0 ∈ ℚ
4 pcxcl 16187 . . . . . 6 ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*)
53, 4mpan2 690 . . . . 5 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*)
65xrleidd 12533 . . . 4 (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
76ad2antrr 725 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0))
8 simpr 488 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0)
98oveq2d 7151 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0))
10 simplr3 1214 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐴𝐵)
118, 10eqbrtrrd 5054 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵)
12 simplr2 1213 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ)
13 0dvds 15622 . . . . . 6 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
1412, 13syl 17 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵𝐵 = 0))
1511, 14mpbid 235 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0)
1615oveq2d 7151 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0))
177, 9, 163brtr4d 5062 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
18 simpll 766 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ)
19 simplr1 1212 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ)
20 simpr 488 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0)
21 pczdvds 16189 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
2218, 19, 20, 21syl12anc 835 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴)
23 simplr3 1214 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐴𝐵)
24 prmnn 16008 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2524ad2antrr 725 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ)
26 pczcl 16175 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2718, 19, 20, 26syl12anc 835 . . . . . . 7 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈ ℕ0)
2825, 27nnexpcld 13602 . . . . . 6 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ)
2928nnzd 12074 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ)
30 simplr2 1213 . . . . 5 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ)
31 dvdstr 15638 . . . . 5 (((𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3229, 19, 30, 31syl3anc 1368 . . . 4 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (((𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴𝐴𝐵) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3322, 23, 32mp2and 698 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)
34 pcdvdsb 16195 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3518, 30, 27, 34syl3anc 1368 . . 3 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵))
3633, 35mpbird 260 . 2 (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
3717, 36pm2.61dane 3074 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  (class class class)co 7135  0cc0 10526  *cxr 10663  cle 10665  cn 11625  0cn0 11885  cz 11969  cq 12336  cexp 13425  cdvds 15599  cprime 16005   pCnt cpc 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-pc 16164
This theorem is referenced by:  pcgcd1  16203  pc2dvds  16205  dvdsppwf1o  25771
  Copyright terms: Public domain W3C validator