![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pcdvdstr | Structured version Visualization version GIF version |
Description: The prime count increases under the divisibility relation. (Contributed by Mario Carneiro, 13-Mar-2014.) |
Ref | Expression |
---|---|
pcdvdstr | ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12566 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
2 | zq 12935 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
4 | pcxcl 16791 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 0 ∈ ℚ) → (𝑃 pCnt 0) ∈ ℝ*) | |
5 | 3, 4 | mpan2 690 | . . . . 5 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ∈ ℝ*) |
6 | 5 | xrleidd 13128 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0)) |
7 | 6 | ad2antrr 725 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 0) ≤ (𝑃 pCnt 0)) |
8 | simpr 486 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐴 = 0) | |
9 | 8 | oveq2d 7422 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) = (𝑃 pCnt 0)) |
10 | simplr3 1218 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐴 ∥ 𝐵) | |
11 | 8, 10 | eqbrtrrd 5172 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 0 ∥ 𝐵) |
12 | simplr2 1217 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐵 ∈ ℤ) | |
13 | 0dvds 16217 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → (0 ∥ 𝐵 ↔ 𝐵 = 0)) | |
14 | 12, 13 | syl 17 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) |
15 | 11, 14 | mpbid 231 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → 𝐵 = 0) |
16 | 15 | oveq2d 7422 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐵) = (𝑃 pCnt 0)) |
17 | 7, 9, 16 | 3brtr4d 5180 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 = 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
18 | prmnn 16608 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
19 | 18 | ad2antrr 725 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℕ) |
20 | simpll 766 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝑃 ∈ ℙ) | |
21 | simplr1 1216 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∈ ℤ) | |
22 | simpr 486 | . . . . . . 7 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ≠ 0) | |
23 | pczcl 16778 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0) | |
24 | 20, 21, 22, 23 | syl12anc 836 | . . . . . 6 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ∈ ℕ0) |
25 | 19, 24 | nnexpcld 14205 | . . . . 5 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℕ) |
26 | 25 | nnzd 12582 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∈ ℤ) |
27 | simplr2 1217 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐵 ∈ ℤ) | |
28 | pczdvds 16793 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) | |
29 | 20, 21, 22, 28 | syl12anc 836 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐴) |
30 | simplr3 1218 | . . . 4 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → 𝐴 ∥ 𝐵) | |
31 | 26, 21, 27, 29, 30 | dvdstrd 16235 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵) |
32 | pcdvdsb 16799 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ (𝑃 pCnt 𝐴) ∈ ℕ0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) | |
33 | 20, 27, 24, 32 | syl3anc 1372 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → ((𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵) ↔ (𝑃↑(𝑃 pCnt 𝐴)) ∥ 𝐵)) |
34 | 31, 33 | mpbird 257 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) ∧ 𝐴 ≠ 0) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
35 | 17, 34 | pm2.61dane 3030 | 1 ⊢ ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵)) → (𝑃 pCnt 𝐴) ≤ (𝑃 pCnt 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 class class class wbr 5148 (class class class)co 7406 0cc0 11107 ℝ*cxr 11244 ≤ cle 11246 ℕcn 12209 ℕ0cn0 12469 ℤcz 12555 ℚcq 12929 ↑cexp 14024 ∥ cdvds 16194 ℙcprime 16605 pCnt cpc 16766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-2o 8464 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-inf 9435 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-dvds 16195 df-gcd 16433 df-prm 16606 df-pc 16767 |
This theorem is referenced by: pcgcd1 16807 pc2dvds 16809 dvdsppwf1o 26680 |
Copyright terms: Public domain | W3C validator |