Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubelfzo0 Structured version   Visualization version   GIF version

Theorem subsubelfzo0 43389
Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
subsubelfzo0 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))

Proof of Theorem subsubelfzo0
StepHypRef Expression
1 elfzo0 13071 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 elfzo0 13071 . . . . . 6 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
3 nnre 11637 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
433ad2ant2 1128 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℝ)
5 nn0re 11898 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
65adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℝ)
7 resubcl 10942 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
84, 6, 7syl2anr 596 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℝ)
9 nn0re 11898 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1093ad2ant1 1127 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 ∈ ℝ)
1110adantl 482 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐼 ∈ ℝ)
12 lenlt 10711 . . . . . . . . . . . . 13 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((𝑁𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (𝑁𝐴)))
1312bicomd 224 . . . . . . . . . . . 12 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
148, 11, 13syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
1514biimpa 477 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ≤ 𝐼)
16 nnz 11996 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1128 . . . . . . . . . . . . . 14 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℤ)
18 nn0z 11997 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1918adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℤ)
20 zsubcl 12016 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
2117, 19, 20syl2anr 596 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℤ)
22 ltle 10721 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 < 𝑁𝐴𝑁))
235, 4, 22syl2an 595 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐴 < 𝑁𝐴𝑁))
2423impancom 452 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐴𝑁))
2524imp 407 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴𝑁)
26 subge0 11145 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
274, 6, 26syl2anr 596 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
2825, 27mpbird 258 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 0 ≤ (𝑁𝐴))
29 elnn0z 11986 . . . . . . . . . . . . 13 ((𝑁𝐴) ∈ ℕ0 ↔ ((𝑁𝐴) ∈ ℤ ∧ 0 ≤ (𝑁𝐴)))
3021, 28, 29sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℕ0)
3130adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ∈ ℕ0)
32 simplr1 1209 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐼 ∈ ℕ0)
33 nn0sub 11939 . . . . . . . . . . 11 (((𝑁𝐴) ∈ ℕ0𝐼 ∈ ℕ0) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3515, 34mpbid 233 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ ℕ0)
36 elnn0uz 12275 . . . . . . . . 9 ((𝐼 − (𝑁𝐴)) ∈ ℕ0 ↔ (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3735, 36sylib 219 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3819adantr 481 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴 ∈ ℤ)
3938adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐴 ∈ ℤ)
409adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝐼 ∈ ℝ)
4140adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℝ)
423adantl 482 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
4342adantl 482 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4442, 5, 7syl2anr 596 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁𝐴) ∈ ℝ)
4541, 43, 44ltsub1d 11241 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 ↔ (𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴))))
46 nncn 11638 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4746adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
48 nn0cn 11899 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
49 nncan 10907 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 − (𝑁𝐴)) = 𝐴)
5047, 48, 49syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁 − (𝑁𝐴)) = 𝐴)
5150breq2d 5074 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) ↔ (𝐼 − (𝑁𝐴)) < 𝐴))
5251biimpd 230 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴))
5345, 52sylbid 241 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴))
5453ex 413 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5554adantr 481 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5655com3l 89 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴)))
57563impia 1111 . . . . . . . . . 10 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴))
5857impcom 408 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐼 − (𝑁𝐴)) < 𝐴)
5958adantr 481 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴)
6037, 39, 593jca 1122 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6160exp31 420 . . . . . 6 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
622, 61syl5bi 243 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
63623adant2 1125 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
641, 63sylbi 218 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
65643imp 1105 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
66 elfzo2 13034 . 2 ((𝐼 − (𝑁𝐴)) ∈ (0..^𝐴) ↔ ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6765, 66sylibr 235 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2106   class class class wbr 5062  cfv 6351  (class class class)co 7151  cc 10527  cr 10528  0cc0 10529   < clt 10667  cle 10668  cmin 10862  cn 11630  0cn0 11889  cz 11973  cuz 12235  ..^cfzo 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12886  df-fzo 13027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator