Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubelfzo0 Structured version   Visualization version   GIF version

Theorem subsubelfzo0 44244
Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
subsubelfzo0 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))

Proof of Theorem subsubelfzo0
StepHypRef Expression
1 elfzo0 13120 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 elfzo0 13120 . . . . . 6 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
3 nnre 11674 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
433ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℝ)
5 nn0re 11936 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
65adantr 485 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℝ)
7 resubcl 10981 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
84, 6, 7syl2anr 600 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℝ)
9 nn0re 11936 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1093ad2ant1 1131 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 ∈ ℝ)
1110adantl 486 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐼 ∈ ℝ)
12 lenlt 10750 . . . . . . . . . . . . 13 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((𝑁𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (𝑁𝐴)))
1312bicomd 226 . . . . . . . . . . . 12 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
148, 11, 13syl2anc 588 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
1514biimpa 481 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ≤ 𝐼)
16 nnz 12036 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℤ)
18 nn0z 12037 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1918adantr 485 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℤ)
20 zsubcl 12056 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
2117, 19, 20syl2anr 600 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℤ)
22 ltle 10760 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 < 𝑁𝐴𝑁))
235, 4, 22syl2an 599 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐴 < 𝑁𝐴𝑁))
2423impancom 456 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐴𝑁))
2524imp 411 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴𝑁)
26 subge0 11184 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
274, 6, 26syl2anr 600 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
2825, 27mpbird 260 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 0 ≤ (𝑁𝐴))
29 elnn0z 12026 . . . . . . . . . . . . 13 ((𝑁𝐴) ∈ ℕ0 ↔ ((𝑁𝐴) ∈ ℤ ∧ 0 ≤ (𝑁𝐴)))
3021, 28, 29sylanbrc 587 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℕ0)
3130adantr 485 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ∈ ℕ0)
32 simplr1 1213 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐼 ∈ ℕ0)
33 nn0sub 11977 . . . . . . . . . . 11 (((𝑁𝐴) ∈ ℕ0𝐼 ∈ ℕ0) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3431, 32, 33syl2anc 588 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3515, 34mpbid 235 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ ℕ0)
36 elnn0uz 12316 . . . . . . . . 9 ((𝐼 − (𝑁𝐴)) ∈ ℕ0 ↔ (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3735, 36sylib 221 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3819adantr 485 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴 ∈ ℤ)
3938adantr 485 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐴 ∈ ℤ)
409adantr 485 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝐼 ∈ ℝ)
4140adantl 486 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℝ)
423adantl 486 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
4342adantl 486 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4442, 5, 7syl2anr 600 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁𝐴) ∈ ℝ)
4541, 43, 44ltsub1d 11280 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 ↔ (𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴))))
46 nncn 11675 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4746adantl 486 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
48 nn0cn 11937 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
49 nncan 10946 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 − (𝑁𝐴)) = 𝐴)
5047, 48, 49syl2anr 600 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁 − (𝑁𝐴)) = 𝐴)
5150breq2d 5045 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) ↔ (𝐼 − (𝑁𝐴)) < 𝐴))
5251biimpd 232 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴))
5345, 52sylbid 243 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴))
5453ex 417 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5554adantr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5655com3l 89 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴)))
57563impia 1115 . . . . . . . . . 10 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴))
5857impcom 412 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐼 − (𝑁𝐴)) < 𝐴)
5958adantr 485 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴)
6037, 39, 593jca 1126 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6160exp31 424 . . . . . 6 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
622, 61syl5bi 245 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
63623adant2 1129 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
641, 63sylbi 220 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
65643imp 1109 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
66 elfzo2 13083 . 2 ((𝐼 − (𝑁𝐴)) ∈ (0..^𝐴) ↔ ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6765, 66sylibr 237 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112   class class class wbr 5033  cfv 6336  (class class class)co 7151  cc 10566  cr 10567  0cc0 10568   < clt 10706  cle 10707  cmin 10901  cn 11667  0cn0 11927  cz 12013  cuz 12275  ..^cfzo 13075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-er 8300  df-en 8529  df-dom 8530  df-sdom 8531  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-nn 11668  df-n0 11928  df-z 12014  df-uz 12276  df-fz 12933  df-fzo 13076
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator