Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubelfzo0 Structured version   Visualization version   GIF version

Theorem subsubelfzo0 46332
Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
subsubelfzo0 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))

Proof of Theorem subsubelfzo0
StepHypRef Expression
1 elfzo0 13677 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 elfzo0 13677 . . . . . 6 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
3 nnre 12223 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
433ad2ant2 1132 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℝ)
5 nn0re 12485 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
65adantr 479 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℝ)
7 resubcl 11528 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
84, 6, 7syl2anr 595 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℝ)
9 nn0re 12485 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1093ad2ant1 1131 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 ∈ ℝ)
1110adantl 480 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐼 ∈ ℝ)
12 lenlt 11296 . . . . . . . . . . . . 13 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((𝑁𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (𝑁𝐴)))
1312bicomd 222 . . . . . . . . . . . 12 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
148, 11, 13syl2anc 582 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
1514biimpa 475 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ≤ 𝐼)
16 nnz 12583 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1132 . . . . . . . . . . . . . 14 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℤ)
18 nn0z 12587 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1918adantr 479 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℤ)
20 zsubcl 12608 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
2117, 19, 20syl2anr 595 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℤ)
22 ltle 11306 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 < 𝑁𝐴𝑁))
235, 4, 22syl2an 594 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐴 < 𝑁𝐴𝑁))
2423impancom 450 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐴𝑁))
2524imp 405 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴𝑁)
26 subge0 11731 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
274, 6, 26syl2anr 595 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
2825, 27mpbird 256 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 0 ≤ (𝑁𝐴))
29 elnn0z 12575 . . . . . . . . . . . . 13 ((𝑁𝐴) ∈ ℕ0 ↔ ((𝑁𝐴) ∈ ℤ ∧ 0 ≤ (𝑁𝐴)))
3021, 28, 29sylanbrc 581 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℕ0)
3130adantr 479 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ∈ ℕ0)
32 simplr1 1213 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐼 ∈ ℕ0)
33 nn0sub 12526 . . . . . . . . . . 11 (((𝑁𝐴) ∈ ℕ0𝐼 ∈ ℕ0) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3431, 32, 33syl2anc 582 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3515, 34mpbid 231 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ ℕ0)
36 elnn0uz 12871 . . . . . . . . 9 ((𝐼 − (𝑁𝐴)) ∈ ℕ0 ↔ (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3735, 36sylib 217 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3819adantr 479 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴 ∈ ℤ)
3938adantr 479 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐴 ∈ ℤ)
409adantr 479 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝐼 ∈ ℝ)
4140adantl 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℝ)
423adantl 480 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
4342adantl 480 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4442, 5, 7syl2anr 595 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁𝐴) ∈ ℝ)
4541, 43, 44ltsub1d 11827 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 ↔ (𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴))))
46 nncn 12224 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4746adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
48 nn0cn 12486 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
49 nncan 11493 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 − (𝑁𝐴)) = 𝐴)
5047, 48, 49syl2anr 595 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁 − (𝑁𝐴)) = 𝐴)
5150breq2d 5159 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) ↔ (𝐼 − (𝑁𝐴)) < 𝐴))
5251biimpd 228 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴))
5345, 52sylbid 239 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴))
5453ex 411 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5554adantr 479 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5655com3l 89 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴)))
57563impia 1115 . . . . . . . . . 10 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴))
5857impcom 406 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐼 − (𝑁𝐴)) < 𝐴)
5958adantr 479 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴)
6037, 39, 593jca 1126 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6160exp31 418 . . . . . 6 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
622, 61biimtrid 241 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
63623adant2 1129 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
641, 63sylbi 216 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
65643imp 1109 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
66 elfzo2 13639 . 2 ((𝐼 − (𝑁𝐴)) ∈ (0..^𝐴) ↔ ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6765, 66sylibr 233 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104   class class class wbr 5147  cfv 6542  (class class class)co 7411  cc 11110  cr 11111  0cc0 11112   < clt 11252  cle 11253  cmin 11448  cn 12216  0cn0 12476  cz 12562  cuz 12826  ..^cfzo 13631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator