Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubelfzo0 Structured version   Visualization version   GIF version

Theorem subsubelfzo0 47241
Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
subsubelfzo0 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))

Proof of Theorem subsubelfzo0
StepHypRef Expression
1 elfzo0 13757 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 elfzo0 13757 . . . . . 6 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
3 nnre 12300 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
433ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℝ)
5 nn0re 12562 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
65adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℝ)
7 resubcl 11600 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
84, 6, 7syl2anr 596 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℝ)
9 nn0re 12562 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1093ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 ∈ ℝ)
1110adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐼 ∈ ℝ)
12 lenlt 11368 . . . . . . . . . . . . 13 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((𝑁𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (𝑁𝐴)))
1312bicomd 223 . . . . . . . . . . . 12 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
148, 11, 13syl2anc 583 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
1514biimpa 476 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ≤ 𝐼)
16 nnz 12660 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℤ)
18 nn0z 12664 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1918adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℤ)
20 zsubcl 12685 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
2117, 19, 20syl2anr 596 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℤ)
22 ltle 11378 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 < 𝑁𝐴𝑁))
235, 4, 22syl2an 595 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐴 < 𝑁𝐴𝑁))
2423impancom 451 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐴𝑁))
2524imp 406 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴𝑁)
26 subge0 11803 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
274, 6, 26syl2anr 596 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
2825, 27mpbird 257 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 0 ≤ (𝑁𝐴))
29 elnn0z 12652 . . . . . . . . . . . . 13 ((𝑁𝐴) ∈ ℕ0 ↔ ((𝑁𝐴) ∈ ℤ ∧ 0 ≤ (𝑁𝐴)))
3021, 28, 29sylanbrc 582 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℕ0)
3130adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ∈ ℕ0)
32 simplr1 1215 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐼 ∈ ℕ0)
33 nn0sub 12603 . . . . . . . . . . 11 (((𝑁𝐴) ∈ ℕ0𝐼 ∈ ℕ0) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3431, 32, 33syl2anc 583 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3515, 34mpbid 232 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ ℕ0)
36 elnn0uz 12948 . . . . . . . . 9 ((𝐼 − (𝑁𝐴)) ∈ ℕ0 ↔ (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3735, 36sylib 218 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3819adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴 ∈ ℤ)
3938adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐴 ∈ ℤ)
409adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝐼 ∈ ℝ)
4140adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℝ)
423adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
4342adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4442, 5, 7syl2anr 596 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁𝐴) ∈ ℝ)
4541, 43, 44ltsub1d 11899 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 ↔ (𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴))))
46 nncn 12301 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
48 nn0cn 12563 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
49 nncan 11565 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 − (𝑁𝐴)) = 𝐴)
5047, 48, 49syl2anr 596 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁 − (𝑁𝐴)) = 𝐴)
5150breq2d 5178 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) ↔ (𝐼 − (𝑁𝐴)) < 𝐴))
5251biimpd 229 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴))
5345, 52sylbid 240 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴))
5453ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5554adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5655com3l 89 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴)))
57563impia 1117 . . . . . . . . . 10 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴))
5857impcom 407 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐼 − (𝑁𝐴)) < 𝐴)
5958adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴)
6037, 39, 593jca 1128 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6160exp31 419 . . . . . 6 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
622, 61biimtrid 242 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
63623adant2 1131 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
641, 63sylbi 217 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
65643imp 1111 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
66 elfzo2 13719 . 2 ((𝐼 − (𝑁𝐴)) ∈ (0..^𝐴) ↔ ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6765, 66sylibr 234 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639  cuz 12903  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator