Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subsubelfzo0 Structured version   Visualization version   GIF version

Theorem subsubelfzo0 47327
Description: Subtracting a difference from a number which is not less than the difference results in a bounded nonnegative integer. (Contributed by Alexander van der Vekens, 21-May-2018.)
Assertion
Ref Expression
subsubelfzo0 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))

Proof of Theorem subsubelfzo0
StepHypRef Expression
1 elfzo0 13661 . . . 4 (𝐴 ∈ (0..^𝑁) ↔ (𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁))
2 elfzo0 13661 . . . . . 6 (𝐼 ∈ (0..^𝑁) ↔ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁))
3 nnre 12193 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
433ad2ant2 1134 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℝ)
5 nn0re 12451 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
65adantr 480 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℝ)
7 resubcl 11486 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑁𝐴) ∈ ℝ)
84, 6, 7syl2anr 597 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℝ)
9 nn0re 12451 . . . . . . . . . . . . . 14 (𝐼 ∈ ℕ0𝐼 ∈ ℝ)
1093ad2ant1 1133 . . . . . . . . . . . . 13 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐼 ∈ ℝ)
1110adantl 481 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐼 ∈ ℝ)
12 lenlt 11252 . . . . . . . . . . . . 13 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((𝑁𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (𝑁𝐴)))
1312bicomd 223 . . . . . . . . . . . 12 (((𝑁𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
148, 11, 13syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (¬ 𝐼 < (𝑁𝐴) ↔ (𝑁𝐴) ≤ 𝐼))
1514biimpa 476 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ≤ 𝐼)
16 nnz 12550 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
17163ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝑁 ∈ ℤ)
18 nn0z 12554 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1918adantr 480 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → 𝐴 ∈ ℤ)
20 zsubcl 12575 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑁𝐴) ∈ ℤ)
2117, 19, 20syl2anr 597 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℤ)
22 ltle 11262 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐴 < 𝑁𝐴𝑁))
235, 4, 22syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐴 < 𝑁𝐴𝑁))
2423impancom 451 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → 𝐴𝑁))
2524imp 406 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴𝑁)
26 subge0 11691 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
274, 6, 26syl2anr 597 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (0 ≤ (𝑁𝐴) ↔ 𝐴𝑁))
2825, 27mpbird 257 . . . . . . . . . . . . 13 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 0 ≤ (𝑁𝐴))
29 elnn0z 12542 . . . . . . . . . . . . 13 ((𝑁𝐴) ∈ ℕ0 ↔ ((𝑁𝐴) ∈ ℤ ∧ 0 ≤ (𝑁𝐴)))
3021, 28, 29sylanbrc 583 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝑁𝐴) ∈ ℕ0)
3130adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝑁𝐴) ∈ ℕ0)
32 simplr1 1216 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐼 ∈ ℕ0)
33 nn0sub 12492 . . . . . . . . . . 11 (((𝑁𝐴) ∈ ℕ0𝐼 ∈ ℕ0) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3431, 32, 33syl2anc 584 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝑁𝐴) ≤ 𝐼 ↔ (𝐼 − (𝑁𝐴)) ∈ ℕ0))
3515, 34mpbid 232 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ ℕ0)
36 elnn0uz 12838 . . . . . . . . 9 ((𝐼 − (𝑁𝐴)) ∈ ℕ0 ↔ (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3735, 36sylib 218 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (ℤ‘0))
3819adantr 480 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → 𝐴 ∈ ℤ)
3938adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → 𝐴 ∈ ℤ)
409adantr 480 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝐼 ∈ ℝ)
4140adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐼 ∈ ℝ)
423adantl 481 . . . . . . . . . . . . . . . . 17 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
4342adantl 481 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
4442, 5, 7syl2anr 597 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁𝐴) ∈ ℝ)
4541, 43, 44ltsub1d 11787 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 ↔ (𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴))))
46 nncn 12194 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
4746adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
48 nn0cn 12452 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
49 nncan 11451 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝑁 − (𝑁𝐴)) = 𝐴)
5047, 48, 49syl2anr 597 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝑁 − (𝑁𝐴)) = 𝐴)
5150breq2d 5119 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) ↔ (𝐼 − (𝑁𝐴)) < 𝐴))
5251biimpd 229 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → ((𝐼 − (𝑁𝐴)) < (𝑁 − (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴))
5345, 52sylbid 240 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0 ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴))
5453ex 412 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5554adantr 480 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → (𝐼 − (𝑁𝐴)) < 𝐴)))
5655com3l 89 . . . . . . . . . . 11 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ) → (𝐼 < 𝑁 → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴)))
57563impia 1117 . . . . . . . . . 10 ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 − (𝑁𝐴)) < 𝐴))
5857impcom 407 . . . . . . . . 9 (((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) → (𝐼 − (𝑁𝐴)) < 𝐴)
5958adantr 480 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) < 𝐴)
6037, 39, 593jca 1128 . . . . . . 7 ((((𝐴 ∈ ℕ0𝐴 < 𝑁) ∧ (𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁)) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6160exp31 419 . . . . . 6 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → ((𝐼 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐼 < 𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
622, 61biimtrid 242 . . . . 5 ((𝐴 ∈ ℕ0𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
63623adant2 1131 . . . 4 ((𝐴 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐴 < 𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
641, 63sylbi 217 . . 3 (𝐴 ∈ (0..^𝑁) → (𝐼 ∈ (0..^𝑁) → (¬ 𝐼 < (𝑁𝐴) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))))
65643imp 1110 . 2 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
66 elfzo2 13623 . 2 ((𝐼 − (𝑁𝐴)) ∈ (0..^𝐴) ↔ ((𝐼 − (𝑁𝐴)) ∈ (ℤ‘0) ∧ 𝐴 ∈ ℤ ∧ (𝐼 − (𝑁𝐴)) < 𝐴))
6765, 66sylibr 234 1 ((𝐴 ∈ (0..^𝑁) ∧ 𝐼 ∈ (0..^𝑁) ∧ ¬ 𝐼 < (𝑁𝐴)) → (𝐼 − (𝑁𝐴)) ∈ (0..^𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   < clt 11208  cle 11209  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ..^cfzo 13615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator