| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sltmulneg1d | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of surreal less-than by a negative number. (Contributed by Scott Fenton, 14-Mar-2025.) |
| Ref | Expression |
|---|---|
| sltmulneg.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| sltmulneg.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| sltmulneg.3 | ⊢ (𝜑 → 𝐶 ∈ No ) |
| sltmulneg.4 | ⊢ (𝜑 → 𝐶 <s 0s ) |
| Ref | Expression |
|---|---|
| sltmulneg1d | ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sltmulneg.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 2 | sltmulneg.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ No ) | |
| 3 | 1, 2 | mulnegs2d 28104 | . . 3 ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐶)) = ( -us ‘(𝐴 ·s 𝐶))) |
| 4 | sltmulneg.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 5 | 4, 2 | mulnegs2d 28104 | . . 3 ⊢ (𝜑 → (𝐵 ·s ( -us ‘𝐶)) = ( -us ‘(𝐵 ·s 𝐶))) |
| 6 | 3, 5 | breq12d 5132 | . 2 ⊢ (𝜑 → ((𝐴 ·s ( -us ‘𝐶)) <s (𝐵 ·s ( -us ‘𝐶)) ↔ ( -us ‘(𝐴 ·s 𝐶)) <s ( -us ‘(𝐵 ·s 𝐶)))) |
| 7 | 2 | negscld 27986 | . . 3 ⊢ (𝜑 → ( -us ‘𝐶) ∈ No ) |
| 8 | negs0s 27975 | . . . 4 ⊢ ( -us ‘ 0s ) = 0s | |
| 9 | sltmulneg.4 | . . . . 5 ⊢ (𝜑 → 𝐶 <s 0s ) | |
| 10 | 0sno 27788 | . . . . . . 7 ⊢ 0s ∈ No | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0s ∈ No ) |
| 12 | 2, 11 | sltnegd 27996 | . . . . 5 ⊢ (𝜑 → (𝐶 <s 0s ↔ ( -us ‘ 0s ) <s ( -us ‘𝐶))) |
| 13 | 9, 12 | mpbid 232 | . . . 4 ⊢ (𝜑 → ( -us ‘ 0s ) <s ( -us ‘𝐶)) |
| 14 | 8, 13 | eqbrtrrid 5155 | . . 3 ⊢ (𝜑 → 0s <s ( -us ‘𝐶)) |
| 15 | 1, 4, 7, 14 | sltmul1d 28116 | . 2 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐴 ·s ( -us ‘𝐶)) <s (𝐵 ·s ( -us ‘𝐶)))) |
| 16 | 4, 2 | mulscld 28078 | . . 3 ⊢ (𝜑 → (𝐵 ·s 𝐶) ∈ No ) |
| 17 | 1, 2 | mulscld 28078 | . . 3 ⊢ (𝜑 → (𝐴 ·s 𝐶) ∈ No ) |
| 18 | 16, 17 | sltnegd 27996 | . 2 ⊢ (𝜑 → ((𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶) ↔ ( -us ‘(𝐴 ·s 𝐶)) <s ( -us ‘(𝐵 ·s 𝐶)))) |
| 19 | 6, 15, 18 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐴 <s 𝐵 ↔ (𝐵 ·s 𝐶) <s (𝐴 ·s 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 No csur 27601 <s cslt 27602 0s c0s 27784 -us cnegs 27968 ·s cmuls 28049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-nadd 8676 df-no 27604 df-slt 27605 df-bday 27606 df-sle 27707 df-sslt 27743 df-scut 27745 df-0s 27786 df-made 27803 df-old 27804 df-left 27806 df-right 27807 df-norec 27888 df-norec2 27899 df-adds 27910 df-negs 27970 df-subs 27971 df-muls 28050 |
| This theorem is referenced by: sltmulneg2d 28120 |
| Copyright terms: Public domain | W3C validator |