![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negs0s | Structured version Visualization version GIF version |
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
Ref | Expression |
---|---|
negs0s | ⊢ ( -us ‘ 0s ) = 0s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | right0s 27226 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
2 | 1 | imaeq2i 6012 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
3 | ima0 6030 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
4 | 2, 3 | eqtri 2765 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
5 | left0s 27225 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
6 | 5 | imaeq2i 6012 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
7 | 6, 3 | eqtri 2765 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
8 | 4, 7 | oveq12i 7370 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
9 | 0sno 27168 | . . 3 ⊢ 0s ∈ No | |
10 | negsval 27327 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
12 | df-0s 27166 | . 2 ⊢ 0s = (∅ |s ∅) | |
13 | 8, 11, 12 | 3eqtr4i 2775 | 1 ⊢ ( -us ‘ 0s ) = 0s |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ∅c0 4283 “ cima 5637 ‘cfv 6497 (class class class)co 7358 No csur 26991 |s cscut 27125 0s c0s 27164 L cleft 27178 R cright 27179 -us cnegs 27321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-tp 4592 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-1o 8413 df-2o 8414 df-no 26994 df-slt 26995 df-bday 26996 df-sslt 27124 df-scut 27126 df-0s 27166 df-made 27180 df-old 27181 df-left 27183 df-right 27184 df-norec 27253 df-negs 27323 |
This theorem is referenced by: subsid1 27358 |
Copyright terms: Public domain | W3C validator |