| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs0s | Structured version Visualization version GIF version | ||
| Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| negs0s | ⊢ ( -us ‘ 0s ) = 0s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | right0s 27812 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
| 2 | 1 | imaeq2i 6032 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
| 3 | ima0 6051 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 4 | 2, 3 | eqtri 2753 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
| 5 | left0s 27811 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
| 6 | 5 | imaeq2i 6032 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
| 7 | 6, 3 | eqtri 2753 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
| 8 | 4, 7 | oveq12i 7402 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
| 9 | 0sno 27745 | . . 3 ⊢ 0s ∈ No | |
| 10 | negsval 27938 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
| 12 | df-0s 27743 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 13 | 8, 11, 12 | 3eqtr4i 2763 | 1 ⊢ ( -us ‘ 0s ) = 0s |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4299 “ cima 5644 ‘cfv 6514 (class class class)co 7390 No csur 27558 |s cscut 27701 0s c0s 27741 L cleft 27760 R cright 27761 -us cnegs 27932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-1o 8437 df-2o 8438 df-no 27561 df-slt 27562 df-bday 27563 df-sslt 27700 df-scut 27702 df-0s 27743 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec 27852 df-negs 27934 |
| This theorem is referenced by: negs1s 27940 slt0neg2d 27964 subsfo 27976 subsid1 27979 sltmulneg1d 28086 mulscan2d 28089 recsex 28128 abssnid 28152 absmuls 28153 abssge0 28154 abssneg 28156 sleabs 28157 elzs2 28294 elnnzs 28296 elznns 28297 recut 28354 0reno 28355 |
| Copyright terms: Public domain | W3C validator |