Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > negs0s | Structured version Visualization version GIF version |
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
Ref | Expression |
---|---|
negs0s | ⊢ ( -us ‘ 0s ) = 0s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | right0s 34076 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
2 | 1 | imaeq2i 5967 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
3 | ima0 5985 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
4 | 2, 3 | eqtri 2766 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
5 | left0s 34075 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
6 | 5 | imaeq2i 5967 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
7 | 6, 3 | eqtri 2766 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
8 | 4, 7 | oveq12i 7287 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
9 | 0sno 34020 | . . 3 ⊢ 0s ∈ No | |
10 | negsval 34123 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
12 | df-0s 34018 | . 2 ⊢ 0s = (∅ |s ∅) | |
13 | 8, 11, 12 | 3eqtr4i 2776 | 1 ⊢ ( -us ‘ 0s ) = 0s |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 ∅c0 4256 “ cima 5592 ‘cfv 6433 (class class class)co 7275 No csur 33843 |s cscut 33977 0s c0s 34016 L cleft 34029 R cright 34030 -us cnegs 34117 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-1o 8297 df-2o 8298 df-no 33846 df-slt 33847 df-bday 33848 df-sslt 33976 df-scut 33978 df-0s 34018 df-made 34031 df-old 34032 df-left 34034 df-right 34035 df-norec 34095 df-negs 34120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |