| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs0s | Structured version Visualization version GIF version | ||
| Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| negs0s | ⊢ ( -us ‘ 0s ) = 0s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | right0s 27859 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
| 2 | 1 | imaeq2i 6014 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
| 3 | ima0 6033 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 4 | 2, 3 | eqtri 2756 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
| 5 | left0s 27858 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
| 6 | 5 | imaeq2i 6014 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
| 7 | 6, 3 | eqtri 2756 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
| 8 | 4, 7 | oveq12i 7367 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
| 9 | 0sno 27790 | . . 3 ⊢ 0s ∈ No | |
| 10 | negsval 27987 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
| 12 | df-0s 27788 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 13 | 8, 11, 12 | 3eqtr4i 2766 | 1 ⊢ ( -us ‘ 0s ) = 0s |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ∅c0 4282 “ cima 5624 ‘cfv 6489 (class class class)co 7355 No csur 27598 |s cscut 27742 0s c0s 27786 L cleft 27806 R cright 27807 -us cnegs 27981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-1o 8394 df-2o 8395 df-no 27601 df-slt 27602 df-bday 27603 df-sslt 27741 df-scut 27743 df-0s 27788 df-made 27808 df-old 27809 df-left 27811 df-right 27812 df-norec 27901 df-negs 27983 |
| This theorem is referenced by: negs1s 27989 slt0neg2d 28013 subsfo 28025 subsid1 28028 sltmulneg1d 28135 mulscan2d 28138 recsex 28177 abssnid 28201 absmuls 28202 abssge0 28203 abssneg 28205 sleabs 28206 elzs2 28343 elnnzs 28345 elznns 28346 recut 28418 0reno 28419 |
| Copyright terms: Public domain | W3C validator |