MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs0s Structured version   Visualization version   GIF version

Theorem negs0s 27852
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negs0s ( -us ‘ 0s ) = 0s

Proof of Theorem negs0s
StepHypRef Expression
1 right0s 27733 . . . . 5 ( R ‘ 0s ) = ∅
21imaeq2i 6057 . . . 4 ( -us “ ( R ‘ 0s )) = ( -us “ ∅)
3 ima0 6076 . . . 4 ( -us “ ∅) = ∅
42, 3eqtri 2759 . . 3 ( -us “ ( R ‘ 0s )) = ∅
5 left0s 27732 . . . . 5 ( L ‘ 0s ) = ∅
65imaeq2i 6057 . . . 4 ( -us “ ( L ‘ 0s )) = ( -us “ ∅)
76, 3eqtri 2759 . . 3 ( -us “ ( L ‘ 0s )) = ∅
84, 7oveq12i 7424 . 2 (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅)
9 0sno 27672 . . 3 0s No
10 negsval 27851 . . 3 ( 0s No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))))
119, 10ax-mp 5 . 2 ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))
12 df-0s 27670 . 2 0s = (∅ |s ∅)
138, 11, 123eqtr4i 2769 1 ( -us ‘ 0s ) = 0s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  c0 4322  cima 5679  cfv 6543  (class class class)co 7412   No csur 27486   |s cscut 27628   0s c0s 27668   L cleft 27685   R cright 27686   -us cnegs 27845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-1o 8472  df-2o 8473  df-no 27489  df-slt 27490  df-bday 27491  df-sslt 27627  df-scut 27629  df-0s 27670  df-made 27687  df-old 27688  df-left 27690  df-right 27691  df-norec 27768  df-negs 27847
This theorem is referenced by:  slt0neg2d  27876  subsid1  27889  sltmulneg1d  27989  mulscan2d  27992  recsex  28030  abssnid  28050  absmuls  28051  abssge0  28052  abssneg  28054  sleabs  28055  0reno  28105
  Copyright terms: Public domain W3C validator