MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs0s Structured version   Visualization version   GIF version

Theorem negs0s 27938
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negs0s ( -us ‘ 0s ) = 0s

Proof of Theorem negs0s
StepHypRef Expression
1 right0s 27819 . . . . 5 ( R ‘ 0s ) = ∅
21imaeq2i 6061 . . . 4 ( -us “ ( R ‘ 0s )) = ( -us “ ∅)
3 ima0 6080 . . . 4 ( -us “ ∅) = ∅
42, 3eqtri 2756 . . 3 ( -us “ ( R ‘ 0s )) = ∅
5 left0s 27818 . . . . 5 ( L ‘ 0s ) = ∅
65imaeq2i 6061 . . . 4 ( -us “ ( L ‘ 0s )) = ( -us “ ∅)
76, 3eqtri 2756 . . 3 ( -us “ ( L ‘ 0s )) = ∅
84, 7oveq12i 7432 . 2 (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅)
9 0sno 27758 . . 3 0s No
10 negsval 27937 . . 3 ( 0s No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))))
119, 10ax-mp 5 . 2 ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))
12 df-0s 27756 . 2 0s = (∅ |s ∅)
138, 11, 123eqtr4i 2766 1 ( -us ‘ 0s ) = 0s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  c0 4323  cima 5681  cfv 6548  (class class class)co 7420   No csur 27572   |s cscut 27714   0s c0s 27754   L cleft 27771   R cright 27772   -us cnegs 27931
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-1o 8486  df-2o 8487  df-no 27575  df-slt 27576  df-bday 27577  df-sslt 27713  df-scut 27715  df-0s 27756  df-made 27773  df-old 27774  df-left 27776  df-right 27777  df-norec 27854  df-negs 27933
This theorem is referenced by:  slt0neg2d  27962  subsid1  27975  sltmulneg1d  28075  mulscan2d  28078  recsex  28116  abssnid  28136  absmuls  28137  abssge0  28138  abssneg  28140  sleabs  28141  recut  28223  0reno  28224
  Copyright terms: Public domain W3C validator