MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  negs0s Structured version   Visualization version   GIF version

Theorem negs0s 27988
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.)
Assertion
Ref Expression
negs0s ( -us ‘ 0s ) = 0s

Proof of Theorem negs0s
StepHypRef Expression
1 right0s 27859 . . . . 5 ( R ‘ 0s ) = ∅
21imaeq2i 6014 . . . 4 ( -us “ ( R ‘ 0s )) = ( -us “ ∅)
3 ima0 6033 . . . 4 ( -us “ ∅) = ∅
42, 3eqtri 2756 . . 3 ( -us “ ( R ‘ 0s )) = ∅
5 left0s 27858 . . . . 5 ( L ‘ 0s ) = ∅
65imaeq2i 6014 . . . 4 ( -us “ ( L ‘ 0s )) = ( -us “ ∅)
76, 3eqtri 2756 . . 3 ( -us “ ( L ‘ 0s )) = ∅
84, 7oveq12i 7367 . 2 (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅)
9 0sno 27790 . . 3 0s No
10 negsval 27987 . . 3 ( 0s No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))))
119, 10ax-mp 5 . 2 ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))
12 df-0s 27788 . 2 0s = (∅ |s ∅)
138, 11, 123eqtr4i 2766 1 ( -us ‘ 0s ) = 0s
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  c0 4282  cima 5624  cfv 6489  (class class class)co 7355   No csur 27598   |s cscut 27742   0s c0s 27786   L cleft 27806   R cright 27807   -us cnegs 27981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-1o 8394  df-2o 8395  df-no 27601  df-slt 27602  df-bday 27603  df-sslt 27741  df-scut 27743  df-0s 27788  df-made 27808  df-old 27809  df-left 27811  df-right 27812  df-norec 27901  df-negs 27983
This theorem is referenced by:  negs1s  27989  slt0neg2d  28013  subsfo  28025  subsid1  28028  sltmulneg1d  28135  mulscan2d  28138  recsex  28177  abssnid  28201  absmuls  28202  abssge0  28203  abssneg  28205  sleabs  28206  elzs2  28343  elnnzs  28345  elznns  28346  recut  28418  0reno  28419
  Copyright terms: Public domain W3C validator