| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > negs0s | Structured version Visualization version GIF version | ||
| Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
| Ref | Expression |
|---|---|
| negs0s | ⊢ ( -us ‘ 0s ) = 0s |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | right0s 27826 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
| 2 | 1 | imaeq2i 6013 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
| 3 | ima0 6032 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
| 4 | 2, 3 | eqtri 2752 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
| 5 | left0s 27825 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
| 6 | 5 | imaeq2i 6013 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
| 7 | 6, 3 | eqtri 2752 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
| 8 | 4, 7 | oveq12i 7365 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
| 9 | 0sno 27758 | . . 3 ⊢ 0s ∈ No | |
| 10 | negsval 27954 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
| 11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
| 12 | df-0s 27756 | . 2 ⊢ 0s = (∅ |s ∅) | |
| 13 | 8, 11, 12 | 3eqtr4i 2762 | 1 ⊢ ( -us ‘ 0s ) = 0s |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∅c0 4286 “ cima 5626 ‘cfv 6486 (class class class)co 7353 No csur 27567 |s cscut 27711 0s c0s 27754 L cleft 27773 R cright 27774 -us cnegs 27948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-1o 8395 df-2o 8396 df-no 27570 df-slt 27571 df-bday 27572 df-sslt 27710 df-scut 27712 df-0s 27756 df-made 27775 df-old 27776 df-left 27778 df-right 27779 df-norec 27868 df-negs 27950 |
| This theorem is referenced by: negs1s 27956 slt0neg2d 27980 subsfo 27992 subsid1 27995 sltmulneg1d 28102 mulscan2d 28105 recsex 28144 abssnid 28168 absmuls 28169 abssge0 28170 abssneg 28172 sleabs 28173 elzs2 28310 elnnzs 28312 elznns 28313 recut 28383 0reno 28384 |
| Copyright terms: Public domain | W3C validator |