![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > negs0s | Structured version Visualization version GIF version |
Description: Negative surreal zero is surreal zero. (Contributed by Scott Fenton, 20-Aug-2024.) |
Ref | Expression |
---|---|
negs0s | ⊢ ( -us ‘ 0s ) = 0s |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | right0s 27819 | . . . . 5 ⊢ ( R ‘ 0s ) = ∅ | |
2 | 1 | imaeq2i 6061 | . . . 4 ⊢ ( -us “ ( R ‘ 0s )) = ( -us “ ∅) |
3 | ima0 6080 | . . . 4 ⊢ ( -us “ ∅) = ∅ | |
4 | 2, 3 | eqtri 2756 | . . 3 ⊢ ( -us “ ( R ‘ 0s )) = ∅ |
5 | left0s 27818 | . . . . 5 ⊢ ( L ‘ 0s ) = ∅ | |
6 | 5 | imaeq2i 6061 | . . . 4 ⊢ ( -us “ ( L ‘ 0s )) = ( -us “ ∅) |
7 | 6, 3 | eqtri 2756 | . . 3 ⊢ ( -us “ ( L ‘ 0s )) = ∅ |
8 | 4, 7 | oveq12i 7432 | . 2 ⊢ (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) = (∅ |s ∅) |
9 | 0sno 27758 | . . 3 ⊢ 0s ∈ No | |
10 | negsval 27937 | . . 3 ⊢ ( 0s ∈ No → ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s )))) | |
11 | 9, 10 | ax-mp 5 | . 2 ⊢ ( -us ‘ 0s ) = (( -us “ ( R ‘ 0s )) |s ( -us “ ( L ‘ 0s ))) |
12 | df-0s 27756 | . 2 ⊢ 0s = (∅ |s ∅) | |
13 | 8, 11, 12 | 3eqtr4i 2766 | 1 ⊢ ( -us ‘ 0s ) = 0s |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∅c0 4323 “ cima 5681 ‘cfv 6548 (class class class)co 7420 No csur 27572 |s cscut 27714 0s c0s 27754 L cleft 27771 R cright 27772 -us cnegs 27931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-1o 8486 df-2o 8487 df-no 27575 df-slt 27576 df-bday 27577 df-sslt 27713 df-scut 27715 df-0s 27756 df-made 27773 df-old 27774 df-left 27776 df-right 27777 df-norec 27854 df-negs 27933 |
This theorem is referenced by: slt0neg2d 27962 subsid1 27975 sltmulneg1d 28075 mulscan2d 28078 recsex 28116 abssnid 28136 absmuls 28137 abssge0 28138 abssneg 28140 sleabs 28141 recut 28223 0reno 28224 |
Copyright terms: Public domain | W3C validator |