| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulnegs2d | Structured version Visualization version GIF version | ||
| Description: Product with negative is negative of product. Part of theorem 7 of [Conway] p. 19. (Contributed by Scott Fenton, 10-Mar-2025.) |
| Ref | Expression |
|---|---|
| mulnegs1d.1 | ⊢ (𝜑 → 𝐴 ∈ No ) |
| mulnegs1d.2 | ⊢ (𝜑 → 𝐵 ∈ No ) |
| Ref | Expression |
|---|---|
| mulnegs2d | ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulnegs1d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ No ) | |
| 2 | mulnegs1d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ No ) | |
| 3 | 1, 2 | mulnegs1d 28103 | . 2 ⊢ (𝜑 → (( -us ‘𝐵) ·s 𝐴) = ( -us ‘(𝐵 ·s 𝐴))) |
| 4 | 1 | negscld 27986 | . . 3 ⊢ (𝜑 → ( -us ‘𝐵) ∈ No ) |
| 5 | 2, 4 | mulscomd 28083 | . 2 ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = (( -us ‘𝐵) ·s 𝐴)) |
| 6 | 2, 1 | mulscomd 28083 | . . 3 ⊢ (𝜑 → (𝐴 ·s 𝐵) = (𝐵 ·s 𝐴)) |
| 7 | 6 | fveq2d 6879 | . 2 ⊢ (𝜑 → ( -us ‘(𝐴 ·s 𝐵)) = ( -us ‘(𝐵 ·s 𝐴))) |
| 8 | 3, 5, 7 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐴 ·s ( -us ‘𝐵)) = ( -us ‘(𝐴 ·s 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 No csur 27601 -us cnegs 27968 ·s cmuls 28049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-1o 8478 df-2o 8479 df-nadd 8676 df-no 27604 df-slt 27605 df-bday 27606 df-sle 27707 df-sslt 27743 df-scut 27745 df-0s 27786 df-made 27803 df-old 27804 df-left 27806 df-right 27807 df-norec 27888 df-norec2 27899 df-adds 27910 df-negs 27970 df-subs 27971 df-muls 28050 |
| This theorem is referenced by: mul2negsd 28105 sltmulneg1d 28119 mulscan2d 28122 recsex 28160 absmuls 28185 |
| Copyright terms: Public domain | W3C validator |