Proof of Theorem squeezedltsq
| Step | Hyp | Ref
| Expression |
| 1 | | squeezedltsq.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 2 | 1 | renegcld 11673 |
. . . . . . . 8
⊢ (𝜑 → -𝐵 ∈ ℝ) |
| 3 | 2 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐵 ∈ ℝ) |
| 4 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝐵 ≤ 0) |
| 5 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 𝐵 ∈ ℝ) |
| 6 | | le0neg1 11754 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵)) |
| 7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵)) |
| 8 | 4, 7 | mpbid 232 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → 0 ≤ -𝐵) |
| 9 | 3, 8 | jca 511 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) |
| 10 | | squeezedltsq.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 11 | 10 | renegcld 11673 |
. . . . . . 7
⊢ (𝜑 → -𝐴 ∈ ℝ) |
| 12 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐴 ∈ ℝ) |
| 13 | | squeezedltsq.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 < 𝐵) |
| 14 | 10, 1 | jca 511 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 15 | | ltneg 11746 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴)) |
| 17 | 13, 16 | mpbid 232 |
. . . . . . 7
⊢ (𝜑 → -𝐵 < -𝐴) |
| 18 | 17 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → -𝐵 < -𝐴) |
| 19 | 9, 12, 18 | 3jca 1128 |
. . . . 5
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → ((-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵) ∧ -𝐴 ∈ ℝ ∧ -𝐵 < -𝐴)) |
| 20 | | lt2msq1 12135 |
. . . . 5
⊢ (((-𝐵 ∈ ℝ ∧ 0 ≤
-𝐵) ∧ -𝐴 ∈ ℝ ∧ -𝐵 < -𝐴) → (-𝐵 · -𝐵) < (-𝐴 · -𝐴)) |
| 21 | 19, 20 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (-𝐵 · -𝐵) < (-𝐴 · -𝐴)) |
| 22 | | recn 11228 |
. . . . . . . 8
⊢ (𝐵 ∈ ℝ → 𝐵 ∈
ℂ) |
| 23 | | mul2neg 11685 |
. . . . . . . 8
⊢ ((𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐵 · -𝐵) = (𝐵 · 𝐵)) |
| 24 | 22, 22, 23 | syl2anc 584 |
. . . . . . 7
⊢ (𝐵 ∈ ℝ → (-𝐵 · -𝐵) = (𝐵 · 𝐵)) |
| 25 | 1, 24 | syl 17 |
. . . . . 6
⊢ (𝜑 → (-𝐵 · -𝐵) = (𝐵 · 𝐵)) |
| 26 | | recn 11228 |
. . . . . . . 8
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℂ) |
| 27 | | mul2neg 11685 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-𝐴 · -𝐴) = (𝐴 · 𝐴)) |
| 28 | 26, 26, 27 | syl2anc 584 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ → (-𝐴 · -𝐴) = (𝐴 · 𝐴)) |
| 29 | 10, 28 | syl 17 |
. . . . . 6
⊢ (𝜑 → (-𝐴 · -𝐴) = (𝐴 · 𝐴)) |
| 30 | 25, 29 | breq12d 5138 |
. . . . 5
⊢ (𝜑 → ((-𝐵 · -𝐵) < (-𝐴 · -𝐴) ↔ (𝐵 · 𝐵) < (𝐴 · 𝐴))) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → ((-𝐵 · -𝐵) < (-𝐴 · -𝐴) ↔ (𝐵 · 𝐵) < (𝐴 · 𝐴))) |
| 32 | 21, 31 | mpbid 232 |
. . 3
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → (𝐵 · 𝐵) < (𝐴 · 𝐴)) |
| 33 | 32 | orcd 873 |
. 2
⊢ ((𝜑 ∧ 𝐵 ≤ 0) → ((𝐵 · 𝐵) < (𝐴 · 𝐴) ∨ (𝐵 · 𝐵) < (𝐶 · 𝐶))) |
| 34 | 1 | anim1i 615 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) |
| 35 | | squeezedltsq.3 |
. . . . . 6
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 36 | 35 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → 𝐶 ∈ ℝ) |
| 37 | | squeezedltsq.5 |
. . . . . 6
⊢ (𝜑 → 𝐵 < 𝐶) |
| 38 | 37 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → 𝐵 < 𝐶) |
| 39 | 34, 36, 38 | 3jca 1128 |
. . . 4
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) ∧ 𝐶 ∈ ℝ ∧ 𝐵 < 𝐶)) |
| 40 | | lt2msq1 12135 |
. . . 4
⊢ (((𝐵 ∈ ℝ ∧ 0 ≤
𝐵) ∧ 𝐶 ∈ ℝ ∧ 𝐵 < 𝐶) → (𝐵 · 𝐵) < (𝐶 · 𝐶)) |
| 41 | 39, 40 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → (𝐵 · 𝐵) < (𝐶 · 𝐶)) |
| 42 | 41 | olcd 874 |
. 2
⊢ ((𝜑 ∧ 0 ≤ 𝐵) → ((𝐵 · 𝐵) < (𝐴 · 𝐴) ∨ (𝐵 · 𝐵) < (𝐶 · 𝐶))) |
| 43 | | 0re 11246 |
. . . 4
⊢ 0 ∈
ℝ |
| 44 | 43 | jctr 524 |
. . 3
⊢ (𝐵 ∈ ℝ → (𝐵 ∈ ℝ ∧ 0 ∈
ℝ)) |
| 45 | | letric 11344 |
. . 3
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐵 ≤ 0
∨ 0 ≤ 𝐵)) |
| 46 | 1, 44, 45 | 3syl 18 |
. 2
⊢ (𝜑 → (𝐵 ≤ 0 ∨ 0 ≤ 𝐵)) |
| 47 | 33, 42, 46 | mpjaodan 960 |
1
⊢ (𝜑 → ((𝐵 · 𝐵) < (𝐴 · 𝐴) ∨ (𝐵 · 𝐵) < (𝐶 · 𝐶))) |