| Mathbox for Ender Ting |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lambert0 | Structured version Visualization version GIF version | ||
| Description: A value of Lambert W (product logarithm) function at zero. (Contributed by Ender Ting, 13-Nov-2025.) |
| Ref | Expression |
|---|---|
| lambert0.1 | ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) |
| Ref | Expression |
|---|---|
| lambert0 | ⊢ 0𝑅0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 11222 | . . . . . 6 ⊢ 0 ∈ V | |
| 2 | eqcom 2741 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 ↔ 0 = 𝑥) | |
| 3 | 2 | biimpi 216 | . . . . . . . . . 10 ⊢ (𝑥 = 0 → 0 = 𝑥) |
| 4 | 0cnd 11221 | . . . . . . . . . 10 ⊢ (𝑥 = 0 → 0 ∈ ℂ) | |
| 5 | 3, 4 | eqeltrrd 2834 | . . . . . . . . 9 ⊢ (𝑥 = 0 → 𝑥 ∈ ℂ) |
| 6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → 𝑥 ∈ ℂ) |
| 7 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → 𝑦 = 0) | |
| 8 | ef0 16096 | . . . . . . . . . . . . 13 ⊢ (exp‘0) = 1 | |
| 9 | ax-1cn 11180 | . . . . . . . . . . . . 13 ⊢ 1 ∈ ℂ | |
| 10 | 8, 9 | eqeltri 2829 | . . . . . . . . . . . 12 ⊢ (exp‘0) ∈ ℂ |
| 11 | 10 | mul02i 11417 | . . . . . . . . . . 11 ⊢ (0 · (exp‘0)) = 0 |
| 12 | 3 | fveq2d 6877 | . . . . . . . . . . . 12 ⊢ (𝑥 = 0 → (exp‘0) = (exp‘𝑥)) |
| 13 | 3, 12 | oveq12d 7418 | . . . . . . . . . . 11 ⊢ (𝑥 = 0 → (0 · (exp‘0)) = (𝑥 · (exp‘𝑥))) |
| 14 | 11, 13 | eqtr3id 2783 | . . . . . . . . . 10 ⊢ (𝑥 = 0 → 0 = (𝑥 · (exp‘𝑥))) |
| 15 | 14 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → 0 = (𝑥 · (exp‘𝑥))) |
| 16 | 7, 15 | eqtrd 2769 | . . . . . . . 8 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → 𝑦 = (𝑥 · (exp‘𝑥))) |
| 17 | 6, 16 | jca 511 | . . . . . . 7 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))) |
| 18 | tbtru 1547 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) | |
| 19 | 17, 18 | sylib 218 | . . . . . 6 ⊢ ((𝑥 = 0 ∧ 𝑦 = 0) → ((𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥))) ↔ ⊤)) |
| 20 | eqid 2734 | . . . . . 6 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 21 | 1, 1, 19, 20 | braba 5510 | . . . . 5 ⊢ (0{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}0 ↔ ⊤) |
| 22 | tbtru 1547 | . . . . 5 ⊢ (0{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}0 ↔ (0{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}0 ↔ ⊤)) | |
| 23 | 21, 22 | mpbir 231 | . . . 4 ⊢ 0{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}0 |
| 24 | df-mpt 5200 | . . . . 5 ⊢ (𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))} | |
| 25 | 24 | breqi 5123 | . . . 4 ⊢ (0(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0 ↔ 0{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ℂ ∧ 𝑦 = (𝑥 · (exp‘𝑥)))}0) |
| 26 | 23, 25 | mpbir 231 | . . 3 ⊢ 0(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0 |
| 27 | 1, 1 | brcnv 5860 | . . 3 ⊢ (0◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0 ↔ 0(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0) |
| 28 | 26, 27 | mpbir 231 | . 2 ⊢ 0◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0 |
| 29 | lambert0.1 | . . 3 ⊢ 𝑅 = ◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥))) | |
| 30 | 29 | breqi 5123 | . 2 ⊢ (0𝑅0 ↔ 0◡(𝑥 ∈ ℂ ↦ (𝑥 · (exp‘𝑥)))0) |
| 31 | 28, 30 | mpbir 231 | 1 ⊢ 0𝑅0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 class class class wbr 5117 {copab 5179 ↦ cmpt 5199 ◡ccnv 5651 ‘cfv 6528 (class class class)co 7400 ℂcc 11120 0cc0 11122 1c1 11123 · cmul 11127 expce 16066 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-inf2 9648 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 ax-pre-sup 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-se 5605 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-isom 6537 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-pm 8838 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-sup 9449 df-inf 9450 df-oi 9517 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-div 11888 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-rp 13002 df-ico 13360 df-fz 13515 df-fzo 13662 df-fl 13799 df-seq 14010 df-exp 14070 df-fac 14282 df-hash 14339 df-shft 15075 df-cj 15107 df-re 15108 df-im 15109 df-sqrt 15243 df-abs 15244 df-limsup 15476 df-clim 15493 df-rlim 15494 df-sum 15692 df-ef 16072 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |