MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgbas Structured version   Visualization version   GIF version

Theorem subgbas 19148
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgbas (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))

Proof of Theorem subgbas
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝐺) = (Base‘𝐺)
21subgss 19145 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
3 subggrp.h . . 3 𝐻 = (𝐺s 𝑆)
43, 1ressbas2 17283 . 2 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻))
52, 4syl 17 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3951  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  SubGrpcsubg 19138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-subg 19141
This theorem is referenced by:  subg0  19150  subginv  19151  subg0cl  19152  subginvcl  19153  subgcl  19154  subgsub  19156  subgmulg  19158  issubg2  19159  subsubg  19167  nmznsg  19186  subgga  19318  gasubg  19320  odsubdvds  19589  pgp0  19614  subgpgp  19615  sylow2blem2  19639  sylow2blem3  19640  slwhash  19642  fislw  19643  sylow3lem4  19648  sylow3lem6  19650  subglsm  19691  pj1ghm  19721  subgabl  19854  cycsubgcyg  19919  subgdmdprd  20054  ablfacrplem  20085  ablfac1c  20091  pgpfaclem1  20101  pgpfaclem2  20102  pgpfaclem3  20103  ablfaclem3  20107  ablfac2  20109  subrngbas  20554  issubrng2  20558  subrgbas  20581  issubrg2  20592  pj1lmhm  21099  phssip  21676  scmatsgrp1  22528  subgtgp  24113  subgnm  24646  subgngp  24648  lssnlm  24722  cmscsscms  25407  cssbn  25409  reefgim  26494  efabl  26592
  Copyright terms: Public domain W3C validator