| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgbas | Structured version Visualization version GIF version | ||
| Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | subgss 19042 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 3 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 4 | 3, 1 | ressbas2 17151 | . 2 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ↾s cress 17143 SubGrpcsubg 19035 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-subg 19038 |
| This theorem is referenced by: subg0 19047 subginv 19048 subg0cl 19049 subginvcl 19050 subgcl 19051 subgsub 19053 subgmulg 19055 issubg2 19056 subsubg 19064 nmznsg 19082 subgga 19214 gasubg 19216 odsubdvds 19485 pgp0 19510 subgpgp 19511 sylow2blem2 19535 sylow2blem3 19536 slwhash 19538 fislw 19539 sylow3lem4 19544 sylow3lem6 19546 subglsm 19587 pj1ghm 19617 subgabl 19750 cycsubgcyg 19815 subgdmdprd 19950 ablfacrplem 19981 ablfac1c 19987 pgpfaclem1 19997 pgpfaclem2 19998 pgpfaclem3 19999 ablfaclem3 20003 ablfac2 20005 subrngbas 20471 issubrng2 20475 subrgbas 20498 issubrg2 20509 pj1lmhm 21036 phssip 21597 scmatsgrp1 22438 subgtgp 24021 subgnm 24549 subgngp 24551 lssnlm 24617 cmscsscms 25301 cssbn 25303 reefgim 26388 efabl 26487 |
| Copyright terms: Public domain | W3C validator |