| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgbas | Structured version Visualization version GIF version | ||
| Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | subgss 19024 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 3 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 4 | 3, 1 | ressbas2 17167 | . 2 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 SubGrpcsubg 19017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-subg 19020 |
| This theorem is referenced by: subg0 19029 subginv 19030 subg0cl 19031 subginvcl 19032 subgcl 19033 subgsub 19035 subgmulg 19037 issubg2 19038 subsubg 19046 nmznsg 19065 subgga 19197 gasubg 19199 odsubdvds 19468 pgp0 19493 subgpgp 19494 sylow2blem2 19518 sylow2blem3 19519 slwhash 19521 fislw 19522 sylow3lem4 19527 sylow3lem6 19529 subglsm 19570 pj1ghm 19600 subgabl 19733 cycsubgcyg 19798 subgdmdprd 19933 ablfacrplem 19964 ablfac1c 19970 pgpfaclem1 19980 pgpfaclem2 19981 pgpfaclem3 19982 ablfaclem3 19986 ablfac2 19988 subrngbas 20457 issubrng2 20461 subrgbas 20484 issubrg2 20495 pj1lmhm 21022 phssip 21583 scmatsgrp1 22425 subgtgp 24008 subgnm 24537 subgngp 24539 lssnlm 24605 cmscsscms 25289 cssbn 25291 reefgim 26376 efabl 26475 |
| Copyright terms: Public domain | W3C validator |