| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgbas | Structured version Visualization version GIF version | ||
| Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | subgss 19110 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 3 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 4 | 3, 1 | ressbas2 17259 | . 2 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 SubGrpcsubg 19103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-subg 19106 |
| This theorem is referenced by: subg0 19115 subginv 19116 subg0cl 19117 subginvcl 19118 subgcl 19119 subgsub 19121 subgmulg 19123 issubg2 19124 subsubg 19132 nmznsg 19151 subgga 19283 gasubg 19285 odsubdvds 19552 pgp0 19577 subgpgp 19578 sylow2blem2 19602 sylow2blem3 19603 slwhash 19605 fislw 19606 sylow3lem4 19611 sylow3lem6 19613 subglsm 19654 pj1ghm 19684 subgabl 19817 cycsubgcyg 19882 subgdmdprd 20017 ablfacrplem 20048 ablfac1c 20054 pgpfaclem1 20064 pgpfaclem2 20065 pgpfaclem3 20066 ablfaclem3 20070 ablfac2 20072 subrngbas 20514 issubrng2 20518 subrgbas 20541 issubrg2 20552 pj1lmhm 21058 phssip 21618 scmatsgrp1 22460 subgtgp 24043 subgnm 24572 subgngp 24574 lssnlm 24640 cmscsscms 25325 cssbn 25327 reefgim 26412 efabl 26511 |
| Copyright terms: Public domain | W3C validator |