| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subgbas | Structured version Visualization version GIF version | ||
| Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 1 | subgss 19037 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 3 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 4 | 3, 1 | ressbas2 17146 | . 2 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 SubGrpcsubg 19030 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-1cn 11061 ax-addcl 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12123 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-subg 19033 |
| This theorem is referenced by: subg0 19042 subginv 19043 subg0cl 19044 subginvcl 19045 subgcl 19046 subgsub 19048 subgmulg 19050 issubg2 19051 subsubg 19059 nmznsg 19078 subgga 19210 gasubg 19212 odsubdvds 19481 pgp0 19506 subgpgp 19507 sylow2blem2 19531 sylow2blem3 19532 slwhash 19534 fislw 19535 sylow3lem4 19540 sylow3lem6 19542 subglsm 19583 pj1ghm 19613 subgabl 19746 cycsubgcyg 19811 subgdmdprd 19946 ablfacrplem 19977 ablfac1c 19983 pgpfaclem1 19993 pgpfaclem2 19994 pgpfaclem3 19995 ablfaclem3 19999 ablfac2 20001 subrngbas 20467 issubrng2 20471 subrgbas 20494 issubrg2 20505 pj1lmhm 21032 phssip 21593 scmatsgrp1 22435 subgtgp 24018 subgnm 24546 subgngp 24548 lssnlm 24614 cmscsscms 25298 cssbn 25300 reefgim 26385 efabl 26484 |
| Copyright terms: Public domain | W3C validator |