MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgbas Structured version   Visualization version   GIF version

Theorem subgbas 19069
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subggrp.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgbas (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))

Proof of Theorem subgbas
StepHypRef Expression
1 eqid 2730 . . 3 (Base‘𝐺) = (Base‘𝐺)
21subgss 19066 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
3 subggrp.h . . 3 𝐻 = (𝐺s 𝑆)
43, 1ressbas2 17215 . 2 (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻))
52, 4syl 17 1 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3917  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  SubGrpcsubg 19059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-1cn 11133  ax-addcl 11135
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-nn 12194  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-subg 19062
This theorem is referenced by:  subg0  19071  subginv  19072  subg0cl  19073  subginvcl  19074  subgcl  19075  subgsub  19077  subgmulg  19079  issubg2  19080  subsubg  19088  nmznsg  19107  subgga  19239  gasubg  19241  odsubdvds  19508  pgp0  19533  subgpgp  19534  sylow2blem2  19558  sylow2blem3  19559  slwhash  19561  fislw  19562  sylow3lem4  19567  sylow3lem6  19569  subglsm  19610  pj1ghm  19640  subgabl  19773  cycsubgcyg  19838  subgdmdprd  19973  ablfacrplem  20004  ablfac1c  20010  pgpfaclem1  20020  pgpfaclem2  20021  pgpfaclem3  20022  ablfaclem3  20026  ablfac2  20028  subrngbas  20470  issubrng2  20474  subrgbas  20497  issubrg2  20508  pj1lmhm  21014  phssip  21574  scmatsgrp1  22416  subgtgp  23999  subgnm  24528  subgngp  24530  lssnlm  24596  cmscsscms  25280  cssbn  25282  reefgim  26367  efabl  26466
  Copyright terms: Public domain W3C validator