Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subgbas | Structured version Visualization version GIF version |
Description: The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subggrp.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
Ref | Expression |
---|---|
subgbas | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 1 | subgss 18756 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
3 | subggrp.h | . . 3 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
4 | 3, 1 | ressbas2 16949 | . 2 ⊢ (𝑆 ⊆ (Base‘𝐺) → 𝑆 = (Base‘𝐻)) |
5 | 2, 4 | syl 17 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 SubGrpcsubg 18749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-subg 18752 |
This theorem is referenced by: subg0 18761 subginv 18762 subg0cl 18763 subginvcl 18764 subgcl 18765 subgsub 18767 subgmulg 18769 issubg2 18770 subsubg 18778 nmznsg 18796 subgga 18906 gasubg 18908 odsubdvds 19176 pgp0 19201 subgpgp 19202 sylow2blem2 19226 sylow2blem3 19227 slwhash 19229 fislw 19230 sylow3lem4 19235 sylow3lem6 19237 subglsm 19279 pj1ghm 19309 subgabl 19437 cycsubgcyg 19502 subgdmdprd 19637 ablfacrplem 19668 ablfac1c 19674 pgpfaclem1 19684 pgpfaclem2 19685 pgpfaclem3 19686 ablfaclem3 19690 ablfac2 19692 subrgbas 20033 issubrg2 20044 pj1lmhm 20362 phssip 20863 scmatsgrp1 21671 subgtgp 23256 subgnm 23789 subgngp 23791 lssnlm 23865 cmscsscms 24537 cssbn 24539 reefgim 25609 efabl 25706 |
Copyright terms: Public domain | W3C validator |