| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgngrp | Structured version Visualization version GIF version | ||
| Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgngrp.u | ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| Ref | Expression |
|---|---|
| cnmsgngrp | ⊢ 𝑈 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | 1 | cnmsgnsubg 21512 | . 2 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 3 | cnmsgngrp.u | . . . 4 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 4 | cnex 11084 | . . . . . 6 ⊢ ℂ ∈ V | |
| 5 | 4 | difexi 5268 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
| 6 | ax-1cn 11061 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | ax-1ne0 11072 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 8 | eldifsn 4738 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
| 9 | 6, 7, 8 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 10 | neg1cn 12107 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 11 | neg1ne0 12109 | . . . . . . 7 ⊢ -1 ≠ 0 | |
| 12 | eldifsn 4738 | . . . . . . 7 ⊢ (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0)) | |
| 13 | 10, 11, 12 | mpbir2an 711 | . . . . . 6 ⊢ -1 ∈ (ℂ ∖ {0}) |
| 14 | prssi 4773 | . . . . . 6 ⊢ ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0})) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {1, -1} ⊆ (ℂ ∖ {0}) |
| 16 | ressabs 17156 | . . . . 5 ⊢ (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 17 | 5, 15, 16 | mp2an 692 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| 18 | 3, 17 | eqtr4i 2757 | . . 3 ⊢ 𝑈 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) |
| 19 | 18 | subggrp 19039 | . 2 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑈 ∈ Grp) |
| 20 | 2, 19 | ax-mp 5 | 1 ⊢ 𝑈 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3899 ⊆ wss 3902 {csn 4576 {cpr 4578 ‘cfv 6481 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 -cneg 11342 ↾s cress 17138 Grpcgrp 18843 SubGrpcsubg 19030 mulGrpcmgp 20056 ℂfldccnfld 21289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-addf 11082 ax-mulf 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-mulr 17172 df-starv 17173 df-tset 17177 df-ple 17178 df-ds 17180 df-unif 17181 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-subg 19033 df-cmn 19692 df-abl 19693 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-oppr 20253 df-dvdsr 20273 df-unit 20274 df-invr 20304 df-dvr 20317 df-drng 20644 df-cnfld 21290 |
| This theorem is referenced by: psgnghm 21515 evpmsubg 33111 |
| Copyright terms: Public domain | W3C validator |