| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnmsgngrp | Structured version Visualization version GIF version | ||
| Description: The group of signs under multiplication. (Contributed by Stefan O'Rear, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnmsgngrp.u | ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| Ref | Expression |
|---|---|
| cnmsgngrp | ⊢ 𝑈 ∈ Grp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) | |
| 2 | 1 | cnmsgnsubg 21492 | . 2 ⊢ {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) |
| 3 | cnmsgngrp.u | . . . 4 ⊢ 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
| 4 | cnex 11155 | . . . . . 6 ⊢ ℂ ∈ V | |
| 5 | 4 | difexi 5287 | . . . . 5 ⊢ (ℂ ∖ {0}) ∈ V |
| 6 | ax-1cn 11132 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 7 | ax-1ne0 11143 | . . . . . . 7 ⊢ 1 ≠ 0 | |
| 8 | eldifsn 4752 | . . . . . . 7 ⊢ (1 ∈ (ℂ ∖ {0}) ↔ (1 ∈ ℂ ∧ 1 ≠ 0)) | |
| 9 | 6, 7, 8 | mpbir2an 711 | . . . . . 6 ⊢ 1 ∈ (ℂ ∖ {0}) |
| 10 | neg1cn 12301 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 11 | neg1ne0 12303 | . . . . . . 7 ⊢ -1 ≠ 0 | |
| 12 | eldifsn 4752 | . . . . . . 7 ⊢ (-1 ∈ (ℂ ∖ {0}) ↔ (-1 ∈ ℂ ∧ -1 ≠ 0)) | |
| 13 | 10, 11, 12 | mpbir2an 711 | . . . . . 6 ⊢ -1 ∈ (ℂ ∖ {0}) |
| 14 | prssi 4787 | . . . . . 6 ⊢ ((1 ∈ (ℂ ∖ {0}) ∧ -1 ∈ (ℂ ∖ {0})) → {1, -1} ⊆ (ℂ ∖ {0})) | |
| 15 | 9, 13, 14 | mp2an 692 | . . . . 5 ⊢ {1, -1} ⊆ (ℂ ∖ {0}) |
| 16 | ressabs 17224 | . . . . 5 ⊢ (((ℂ ∖ {0}) ∈ V ∧ {1, -1} ⊆ (ℂ ∖ {0})) → (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})) | |
| 17 | 5, 15, 16 | mp2an 692 | . . . 4 ⊢ (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) |
| 18 | 3, 17 | eqtr4i 2756 | . . 3 ⊢ 𝑈 = (((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) ↾s {1, -1}) |
| 19 | 18 | subggrp 19067 | . 2 ⊢ ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → 𝑈 ∈ Grp) |
| 20 | 2, 19 | ax-mp 5 | 1 ⊢ 𝑈 ∈ Grp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 {csn 4591 {cpr 4593 ‘cfv 6513 (class class class)co 7389 ℂcc 11072 0cc0 11074 1c1 11075 -cneg 11412 ↾s cress 17206 Grpcgrp 18871 SubGrpcsubg 19058 mulGrpcmgp 20055 ℂfldccnfld 21270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-grp 18874 df-minusg 18875 df-subg 19061 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-drng 20646 df-cnfld 21271 |
| This theorem is referenced by: psgnghm 21495 evpmsubg 33110 |
| Copyright terms: Public domain | W3C validator |