MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubgrpd Structured version   Visualization version   GIF version

Theorem issubgrpd 19060
Description: Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.)
Hypotheses
Ref Expression
issubgrpd.s (𝜑𝑆 = (𝐼s 𝐷))
issubgrpd.z (𝜑0 = (0g𝐼))
issubgrpd.p (𝜑+ = (+g𝐼))
issubgrpd.ss (𝜑𝐷 ⊆ (Base‘𝐼))
issubgrpd.zcl (𝜑0𝐷)
issubgrpd.acl ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
issubgrpd.ncl ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
issubgrpd.g (𝜑𝐼 ∈ Grp)
Assertion
Ref Expression
issubgrpd (𝜑𝑆 ∈ Grp)
Distinct variable groups:   𝑥,𝑦, 0   𝑥,𝐷,𝑦   𝑥,𝐼,𝑦   𝑥, + ,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem issubgrpd
StepHypRef Expression
1 issubgrpd.s . 2 (𝜑𝑆 = (𝐼s 𝐷))
2 issubgrpd.z . . . 4 (𝜑0 = (0g𝐼))
3 issubgrpd.p . . . 4 (𝜑+ = (+g𝐼))
4 issubgrpd.ss . . . 4 (𝜑𝐷 ⊆ (Base‘𝐼))
5 issubgrpd.zcl . . . 4 (𝜑0𝐷)
6 issubgrpd.acl . . . 4 ((𝜑𝑥𝐷𝑦𝐷) → (𝑥 + 𝑦) ∈ 𝐷)
7 issubgrpd.ncl . . . 4 ((𝜑𝑥𝐷) → ((invg𝐼)‘𝑥) ∈ 𝐷)
8 issubgrpd.g . . . 4 (𝜑𝐼 ∈ Grp)
91, 2, 3, 4, 5, 6, 7, 8issubgrpd2 19059 . . 3 (𝜑𝐷 ∈ (SubGrp‘𝐼))
10 eqid 2731 . . . 4 (𝐼s 𝐷) = (𝐼s 𝐷)
1110subggrp 19046 . . 3 (𝐷 ∈ (SubGrp‘𝐼) → (𝐼s 𝐷) ∈ Grp)
129, 11syl 17 . 2 (𝜑 → (𝐼s 𝐷) ∈ Grp)
131, 12eqeltrd 2832 1 (𝜑𝑆 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  wss 3948  cfv 6543  (class class class)co 7412  Basecbs 17149  s cress 17178  +gcplusg 17202  0gc0g 17390  Grpcgrp 18856  invgcminusg 18857  SubGrpcsubg 19037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-0g 17392  df-mgm 18566  df-sgrp 18645  df-mnd 18661  df-grp 18859  df-minusg 18860  df-subg 19040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator