MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odsubdvds Structured version   Visualization version   GIF version

Theorem odsubdvds 18984
Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
odsubdvds.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odsubdvds ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) ∥ (♯‘𝑆))

Proof of Theorem odsubdvds
StepHypRef Expression
1 eqid 2738 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 18570 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
323ad2ant1 1135 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝐺s 𝑆) ∈ Grp)
41subgbas 18571 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
543ad2ant1 1135 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝑆 = (Base‘(𝐺s 𝑆)))
6 simp2 1139 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝑆 ∈ Fin)
75, 6eqeltrrd 2840 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (Base‘(𝐺s 𝑆)) ∈ Fin)
8 simp3 1140 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝐴𝑆)
98, 5eleqtrd 2841 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
10 eqid 2738 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
11 eqid 2738 . . . 4 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
1210, 11oddvds2 18981 . . 3 (((𝐺s 𝑆) ∈ Grp ∧ (Base‘(𝐺s 𝑆)) ∈ Fin ∧ 𝐴 ∈ (Base‘(𝐺s 𝑆))) → ((od‘(𝐺s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺s 𝑆))))
133, 7, 9, 12syl3anc 1373 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → ((od‘(𝐺s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺s 𝑆))))
14 odsubdvds.1 . . . 4 𝑂 = (od‘𝐺)
151, 14, 11subgod 18983 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝑂𝐴) = ((od‘(𝐺s 𝑆))‘𝐴))
16153adant2 1133 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) = ((od‘(𝐺s 𝑆))‘𝐴))
175fveq2d 6739 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (♯‘𝑆) = (♯‘(Base‘(𝐺s 𝑆))))
1813, 16, 173brtr4d 5099 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) ∥ (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1089   = wceq 1543  wcel 2111   class class class wbr 5067  cfv 6397  (class class class)co 7231  Fincfn 8646  chash 13920  cdvds 15839  Basecbs 16784  s cress 16808  Grpcgrp 18389  SubGrpcsubg 18561  odcod 18940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-inf2 9280  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-pre-sup 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-uni 4834  df-int 4874  df-iun 4920  df-disj 5033  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-se 5524  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-isom 6406  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-om 7663  df-1st 7779  df-2nd 7780  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-oadd 8226  df-omul 8227  df-er 8411  df-ec 8413  df-qs 8417  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-sup 9082  df-inf 9083  df-oi 9150  df-card 9579  df-acn 9582  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-div 11514  df-nn 11855  df-2 11917  df-3 11918  df-n0 12115  df-z 12201  df-uz 12463  df-rp 12611  df-fz 13120  df-fzo 13263  df-fl 13391  df-mod 13467  df-seq 13599  df-exp 13660  df-hash 13921  df-cj 14686  df-re 14687  df-im 14688  df-sqrt 14822  df-abs 14823  df-clim 15073  df-sum 15274  df-dvds 15840  df-sets 16741  df-slot 16759  df-ndx 16769  df-base 16785  df-ress 16809  df-plusg 16839  df-0g 16970  df-mgm 18138  df-sgrp 18187  df-mnd 18198  df-submnd 18243  df-grp 18392  df-minusg 18393  df-sbg 18394  df-mulg 18513  df-subg 18564  df-eqg 18566  df-od 18944
This theorem is referenced by:  odcau  19017  ablfac1eu  19484  idomsubgmo  40754
  Copyright terms: Public domain W3C validator