![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odsubdvds | Structured version Visualization version GIF version |
Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
odsubdvds.1 | ⊢ 𝑂 = (od‘𝐺) |
Ref | Expression |
---|---|
odsubdvds | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) ∥ (♯‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 19046 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
3 | 2 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝐺 ↾s 𝑆) ∈ Grp) |
4 | 1 | subgbas 19047 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
5 | 4 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
6 | simp2 1136 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝑆 ∈ Fin) | |
7 | 5, 6 | eqeltrrd 2833 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (Base‘(𝐺 ↾s 𝑆)) ∈ Fin) |
8 | simp3 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
9 | 8, 5 | eleqtrd 2834 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
10 | eqid 2731 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
11 | eqid 2731 | . . . 4 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
12 | 10, 11 | oddvds2 19476 | . . 3 ⊢ (((𝐺 ↾s 𝑆) ∈ Grp ∧ (Base‘(𝐺 ↾s 𝑆)) ∈ Fin ∧ 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) → ((od‘(𝐺 ↾s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
13 | 3, 7, 9, 12 | syl3anc 1370 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → ((od‘(𝐺 ↾s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
14 | odsubdvds.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
15 | 1, 14, 11 | subgod 19480 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) = ((od‘(𝐺 ↾s 𝑆))‘𝐴)) |
16 | 15 | 3adant2 1130 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) = ((od‘(𝐺 ↾s 𝑆))‘𝐴)) |
17 | 5 | fveq2d 6895 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (♯‘𝑆) = (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
18 | 13, 16, 17 | 3brtr4d 5180 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) ∥ (♯‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 Fincfn 8943 ♯chash 14295 ∥ cdvds 16202 Basecbs 17149 ↾s cress 17178 Grpcgrp 18856 SubGrpcsubg 19037 odcod 19434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9640 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-pre-sup 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-disj 5114 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-oadd 8474 df-omul 8475 df-er 8707 df-ec 8709 df-qs 8713 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-sup 9441 df-inf 9442 df-oi 9509 df-card 9938 df-acn 9941 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-dvds 16203 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18988 df-subg 19040 df-eqg 19042 df-od 19438 |
This theorem is referenced by: odcau 19514 ablfac1eu 19985 idomsubgmo 42243 |
Copyright terms: Public domain | W3C validator |