MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odsubdvds Structured version   Visualization version   GIF version

Theorem odsubdvds 19476
Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypothesis
Ref Expression
odsubdvds.1 𝑂 = (od‘𝐺)
Assertion
Ref Expression
odsubdvds ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) ∥ (♯‘𝑆))

Proof of Theorem odsubdvds
StepHypRef Expression
1 eqid 2730 . . . . 5 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 19034 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
323ad2ant1 1133 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝐺s 𝑆) ∈ Grp)
41subgbas 19035 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
543ad2ant1 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝑆 = (Base‘(𝐺s 𝑆)))
6 simp2 1137 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝑆 ∈ Fin)
75, 6eqeltrrd 2830 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (Base‘(𝐺s 𝑆)) ∈ Fin)
8 simp3 1138 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝐴𝑆)
98, 5eleqtrd 2831 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → 𝐴 ∈ (Base‘(𝐺s 𝑆)))
10 eqid 2730 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
11 eqid 2730 . . . 4 (od‘(𝐺s 𝑆)) = (od‘(𝐺s 𝑆))
1210, 11oddvds2 19471 . . 3 (((𝐺s 𝑆) ∈ Grp ∧ (Base‘(𝐺s 𝑆)) ∈ Fin ∧ 𝐴 ∈ (Base‘(𝐺s 𝑆))) → ((od‘(𝐺s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺s 𝑆))))
133, 7, 9, 12syl3anc 1373 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → ((od‘(𝐺s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺s 𝑆))))
14 odsubdvds.1 . . . 4 𝑂 = (od‘𝐺)
151, 14, 11subgod 19475 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → (𝑂𝐴) = ((od‘(𝐺s 𝑆))‘𝐴))
16153adant2 1131 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) = ((od‘(𝐺s 𝑆))‘𝐴))
175fveq2d 6821 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (♯‘𝑆) = (♯‘(Base‘(𝐺s 𝑆))))
1813, 16, 173brtr4d 5121 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴𝑆) → (𝑂𝐴) ∥ (♯‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  Fincfn 8864  chash 14229  cdvds 16155  Basecbs 17112  s cress 17133  Grpcgrp 18838  SubGrpcsubg 19025  odcod 19429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586  df-dvds 16156  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-eqg 19030  df-od 19433
This theorem is referenced by:  odcau  19509  ablfac1eu  19980  idomsubgmo  43205
  Copyright terms: Public domain W3C validator