| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > odsubdvds | Structured version Visualization version GIF version | ||
| Description: The order of an element of a subgroup divides the order of the subgroup. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| odsubdvds.1 | ⊢ 𝑂 = (od‘𝐺) |
| Ref | Expression |
|---|---|
| odsubdvds | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) ∥ (♯‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19052 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 4 | 1 | subgbas 19053 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 6 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝑆 ∈ Fin) | |
| 7 | 5, 6 | eqeltrrd 2834 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (Base‘(𝐺 ↾s 𝑆)) ∈ Fin) |
| 8 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ 𝑆) | |
| 9 | 8, 5 | eleqtrd 2835 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 10 | eqid 2733 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 11 | eqid 2733 | . . . 4 ⊢ (od‘(𝐺 ↾s 𝑆)) = (od‘(𝐺 ↾s 𝑆)) | |
| 12 | 10, 11 | oddvds2 19488 | . . 3 ⊢ (((𝐺 ↾s 𝑆) ∈ Grp ∧ (Base‘(𝐺 ↾s 𝑆)) ∈ Fin ∧ 𝐴 ∈ (Base‘(𝐺 ↾s 𝑆))) → ((od‘(𝐺 ↾s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
| 13 | 3, 7, 9, 12 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → ((od‘(𝐺 ↾s 𝑆))‘𝐴) ∥ (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
| 14 | odsubdvds.1 | . . . 4 ⊢ 𝑂 = (od‘𝐺) | |
| 15 | 1, 14, 11 | subgod 19492 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) = ((od‘(𝐺 ↾s 𝑆))‘𝐴)) |
| 16 | 15 | 3adant2 1131 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) = ((od‘(𝐺 ↾s 𝑆))‘𝐴)) |
| 17 | 5 | fveq2d 6835 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (♯‘𝑆) = (♯‘(Base‘(𝐺 ↾s 𝑆)))) |
| 18 | 13, 16, 17 | 3brtr4d 5127 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑆 ∈ Fin ∧ 𝐴 ∈ 𝑆) → (𝑂‘𝐴) ∥ (♯‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 Fincfn 8878 ♯chash 14247 ∥ cdvds 16173 Basecbs 17130 ↾s cress 17151 Grpcgrp 18856 SubGrpcsubg 19043 odcod 19446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9541 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 ax-pre-sup 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-oadd 8398 df-omul 8399 df-er 8631 df-ec 8633 df-qs 8637 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-oi 9406 df-card 9842 df-acn 9845 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 df-nn 12136 df-2 12198 df-3 12199 df-n0 12392 df-z 12479 df-uz 12743 df-rp 12901 df-fz 13418 df-fzo 13565 df-fl 13706 df-mod 13784 df-seq 13919 df-exp 13979 df-hash 14248 df-cj 15016 df-re 15017 df-im 15018 df-sqrt 15152 df-abs 15153 df-clim 15405 df-sum 15604 df-dvds 16174 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-ress 17152 df-plusg 17184 df-0g 17355 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-submnd 18702 df-grp 18859 df-minusg 18860 df-sbg 18861 df-mulg 18991 df-subg 19046 df-eqg 19048 df-od 19450 |
| This theorem is referenced by: odcau 19526 ablfac1eu 19997 idomsubgmo 43300 |
| Copyright terms: Public domain | W3C validator |