![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgp0 | Structured version Visualization version GIF version |
Description: The identity subgroup is a 𝑃-group for every prime 𝑃. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
pgp0.1 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
pgp0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16721 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
3 | 2 | nncnd 12309 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ) |
4 | 3 | exp0d 14190 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑃↑0) = 1) |
5 | pgp0.1 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | fvexi 6934 | . . . . 5 ⊢ 0 ∈ V |
7 | hashsng 14418 | . . . . 5 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (♯‘{ 0 }) = 1 |
9 | 5 | 0subg 19191 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } ∈ (SubGrp‘𝐺)) |
11 | eqid 2740 | . . . . . . 7 ⊢ (𝐺 ↾s { 0 }) = (𝐺 ↾s { 0 }) | |
12 | 11 | subgbas 19170 | . . . . . 6 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
14 | 13 | fveq2d 6924 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘{ 0 }) = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
15 | 8, 14 | eqtr3id 2794 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 1 = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
16 | 4, 15 | eqtr2d 2781 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0)) |
17 | 11 | subggrp 19169 | . . . 4 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → (𝐺 ↾s { 0 }) ∈ Grp) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝐺 ↾s { 0 }) ∈ Grp) |
19 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
20 | 0nn0 12568 | . . . 4 ⊢ 0 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 0 ∈ ℕ0) |
22 | eqid 2740 | . . . 4 ⊢ (Base‘(𝐺 ↾s { 0 })) = (Base‘(𝐺 ↾s { 0 })) | |
23 | 22 | pgpfi1 19637 | . . 3 ⊢ (((𝐺 ↾s { 0 }) ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 0 ∈ ℕ0) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
24 | 18, 19, 21, 23 | syl3anc 1371 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
25 | 16, 24 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 ℕcn 12293 ℕ0cn0 12553 ↑cexp 14112 ♯chash 14379 ℙcprime 16718 Basecbs 17258 ↾s cress 17287 0gc0g 17499 Grpcgrp 18973 SubGrpcsubg 19160 pGrp cpgp 19568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-disj 5134 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 df-er 8763 df-ec 8765 df-qs 8769 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-acn 10011 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-fz 13568 df-fzo 13712 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-clim 15534 df-sum 15735 df-dvds 16303 df-gcd 16541 df-prm 16719 df-pc 16884 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-eqg 19165 df-od 19570 df-pgp 19572 |
This theorem is referenced by: slwn0 19657 |
Copyright terms: Public domain | W3C validator |