Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pgp0 | Structured version Visualization version GIF version |
Description: The identity subgroup is a 𝑃-group for every prime 𝑃. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
pgp0.1 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
pgp0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16127 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | adantl 485 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
3 | 2 | nncnd 11744 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ) |
4 | 3 | exp0d 13608 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑃↑0) = 1) |
5 | pgp0.1 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | fvexi 6700 | . . . . 5 ⊢ 0 ∈ V |
7 | hashsng 13834 | . . . . 5 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (♯‘{ 0 }) = 1 |
9 | 5 | 0subg 18434 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
10 | 9 | adantr 484 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } ∈ (SubGrp‘𝐺)) |
11 | eqid 2739 | . . . . . . 7 ⊢ (𝐺 ↾s { 0 }) = (𝐺 ↾s { 0 }) | |
12 | 11 | subgbas 18413 | . . . . . 6 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
14 | 13 | fveq2d 6690 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘{ 0 }) = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
15 | 8, 14 | eqtr3id 2788 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 1 = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
16 | 4, 15 | eqtr2d 2775 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0)) |
17 | 11 | subggrp 18412 | . . . 4 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → (𝐺 ↾s { 0 }) ∈ Grp) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝐺 ↾s { 0 }) ∈ Grp) |
19 | simpr 488 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
20 | 0nn0 12003 | . . . 4 ⊢ 0 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 0 ∈ ℕ0) |
22 | eqid 2739 | . . . 4 ⊢ (Base‘(𝐺 ↾s { 0 })) = (Base‘(𝐺 ↾s { 0 })) | |
23 | 22 | pgpfi1 18850 | . . 3 ⊢ (((𝐺 ↾s { 0 }) ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 0 ∈ ℕ0) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
24 | 18, 19, 21, 23 | syl3anc 1372 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
25 | 16, 24 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 Vcvv 3400 {csn 4526 class class class wbr 5040 ‘cfv 6349 (class class class)co 7182 0cc0 10627 1c1 10628 ℕcn 11728 ℕ0cn0 11988 ↑cexp 13533 ♯chash 13794 ℙcprime 16124 Basecbs 16598 ↾s cress 16599 0gc0g 16828 Grpcgrp 18231 SubGrpcsubg 18403 pGrp cpgp 18784 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5164 ax-sep 5177 ax-nul 5184 ax-pow 5242 ax-pr 5306 ax-un 7491 ax-inf2 9189 ax-cnex 10683 ax-resscn 10684 ax-1cn 10685 ax-icn 10686 ax-addcl 10687 ax-addrcl 10688 ax-mulcl 10689 ax-mulrcl 10690 ax-mulcom 10691 ax-addass 10692 ax-mulass 10693 ax-distr 10694 ax-i2m1 10695 ax-1ne0 10696 ax-1rid 10697 ax-rnegex 10698 ax-rrecex 10699 ax-cnre 10700 ax-pre-lttri 10701 ax-pre-lttrn 10702 ax-pre-ltadd 10703 ax-pre-mulgt0 10704 ax-pre-sup 10705 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3402 df-sbc 3686 df-csb 3801 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-pss 3872 df-nul 4222 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4807 df-int 4847 df-iun 4893 df-disj 5006 df-br 5041 df-opab 5103 df-mpt 5121 df-tr 5147 df-id 5439 df-eprel 5444 df-po 5452 df-so 5453 df-fr 5493 df-se 5494 df-we 5495 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-rn 5546 df-res 5547 df-ima 5548 df-pred 6139 df-ord 6185 df-on 6186 df-lim 6187 df-suc 6188 df-iota 6307 df-fun 6351 df-fn 6352 df-f 6353 df-f1 6354 df-fo 6355 df-f1o 6356 df-fv 6357 df-isom 6358 df-riota 7139 df-ov 7185 df-oprab 7186 df-mpo 7187 df-om 7612 df-1st 7726 df-2nd 7727 df-wrecs 7988 df-recs 8049 df-rdg 8087 df-1o 8143 df-2o 8144 df-oadd 8147 df-omul 8148 df-er 8332 df-ec 8334 df-qs 8338 df-map 8451 df-en 8568 df-dom 8569 df-sdom 8570 df-fin 8571 df-sup 8991 df-inf 8992 df-oi 9059 df-card 9453 df-acn 9456 df-pnf 10767 df-mnf 10768 df-xr 10769 df-ltxr 10770 df-le 10771 df-sub 10962 df-neg 10963 df-div 11388 df-nn 11729 df-2 11791 df-3 11792 df-n0 11989 df-z 12075 df-uz 12337 df-q 12443 df-rp 12485 df-fz 12994 df-fzo 13137 df-fl 13265 df-mod 13341 df-seq 13473 df-exp 13534 df-hash 13795 df-cj 14560 df-re 14561 df-im 14562 df-sqrt 14696 df-abs 14697 df-clim 14947 df-sum 15148 df-dvds 15712 df-gcd 15950 df-prm 16125 df-pc 16286 df-ndx 16601 df-slot 16602 df-base 16604 df-sets 16605 df-ress 16606 df-plusg 16693 df-0g 16830 df-mgm 17980 df-sgrp 18029 df-mnd 18040 df-grp 18234 df-minusg 18235 df-sbg 18236 df-mulg 18355 df-subg 18406 df-eqg 18408 df-od 18786 df-pgp 18788 |
This theorem is referenced by: slwn0 18870 |
Copyright terms: Public domain | W3C validator |