| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pgp0 | Structured version Visualization version GIF version | ||
| Description: The identity subgroup is a 𝑃-group for every prime 𝑃. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| pgp0.1 | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| pgp0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prmnn 16589 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
| 3 | 2 | nncnd 12150 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ) |
| 4 | 3 | exp0d 14051 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑃↑0) = 1) |
| 5 | pgp0.1 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
| 6 | 5 | fvexi 6844 | . . . . 5 ⊢ 0 ∈ V |
| 7 | hashsng 14280 | . . . . 5 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
| 8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (♯‘{ 0 }) = 1 |
| 9 | 5 | 0subg 19068 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } ∈ (SubGrp‘𝐺)) |
| 11 | eqid 2733 | . . . . . . 7 ⊢ (𝐺 ↾s { 0 }) = (𝐺 ↾s { 0 }) | |
| 12 | 11 | subgbas 19047 | . . . . . 6 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
| 13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
| 14 | 13 | fveq2d 6834 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘{ 0 }) = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
| 15 | 8, 14 | eqtr3id 2782 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 1 = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
| 16 | 4, 15 | eqtr2d 2769 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0)) |
| 17 | 11 | subggrp 19046 | . . . 4 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → (𝐺 ↾s { 0 }) ∈ Grp) |
| 18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝐺 ↾s { 0 }) ∈ Grp) |
| 19 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
| 20 | 0nn0 12405 | . . . 4 ⊢ 0 ∈ ℕ0 | |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 0 ∈ ℕ0) |
| 22 | eqid 2733 | . . . 4 ⊢ (Base‘(𝐺 ↾s { 0 })) = (Base‘(𝐺 ↾s { 0 })) | |
| 23 | 22 | pgpfi1 19511 | . . 3 ⊢ (((𝐺 ↾s { 0 }) ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 0 ∈ ℕ0) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
| 24 | 18, 19, 21, 23 | syl3anc 1373 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
| 25 | 16, 24 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 class class class wbr 5095 ‘cfv 6488 (class class class)co 7354 0cc0 11015 1c1 11016 ℕcn 12134 ℕ0cn0 12390 ↑cexp 13972 ♯chash 14241 ℙcprime 16586 Basecbs 17124 ↾s cress 17145 0gc0g 17347 Grpcgrp 18850 SubGrpcsubg 19037 pGrp cpgp 19442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-disj 5063 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-2o 8394 df-oadd 8397 df-omul 8398 df-er 8630 df-ec 8632 df-qs 8636 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-oi 9405 df-card 9841 df-acn 9844 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-seq 13913 df-exp 13973 df-hash 14242 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-clim 15399 df-sum 15598 df-dvds 16168 df-gcd 16410 df-prm 16587 df-pc 16753 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-submnd 18696 df-grp 18853 df-minusg 18854 df-sbg 18855 df-mulg 18985 df-subg 19040 df-eqg 19042 df-od 19444 df-pgp 19446 |
| This theorem is referenced by: slwn0 19531 |
| Copyright terms: Public domain | W3C validator |