![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pgp0 | Structured version Visualization version GIF version |
Description: The identity subgroup is a 𝑃-group for every prime 𝑃. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
pgp0.1 | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
pgp0 | ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmnn 16608 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℕ) |
3 | 2 | nncnd 12225 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℂ) |
4 | 3 | exp0d 14102 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝑃↑0) = 1) |
5 | pgp0.1 | . . . . . 6 ⊢ 0 = (0g‘𝐺) | |
6 | 5 | fvexi 6895 | . . . . 5 ⊢ 0 ∈ V |
7 | hashsng 14326 | . . . . 5 ⊢ ( 0 ∈ V → (♯‘{ 0 }) = 1) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (♯‘{ 0 }) = 1 |
9 | 5 | 0subg 19068 | . . . . . . 7 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } ∈ (SubGrp‘𝐺)) |
11 | eqid 2724 | . . . . . . 7 ⊢ (𝐺 ↾s { 0 }) = (𝐺 ↾s { 0 }) | |
12 | 11 | subgbas 19047 | . . . . . 6 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
13 | 10, 12 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → { 0 } = (Base‘(𝐺 ↾s { 0 }))) |
14 | 13 | fveq2d 6885 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘{ 0 }) = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
15 | 8, 14 | eqtr3id 2778 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 1 = (♯‘(Base‘(𝐺 ↾s { 0 })))) |
16 | 4, 15 | eqtr2d 2765 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0)) |
17 | 11 | subggrp 19046 | . . . 4 ⊢ ({ 0 } ∈ (SubGrp‘𝐺) → (𝐺 ↾s { 0 }) ∈ Grp) |
18 | 10, 17 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → (𝐺 ↾s { 0 }) ∈ Grp) |
19 | simpr 484 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ) | |
20 | 0nn0 12484 | . . . 4 ⊢ 0 ∈ ℕ0 | |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 0 ∈ ℕ0) |
22 | eqid 2724 | . . . 4 ⊢ (Base‘(𝐺 ↾s { 0 })) = (Base‘(𝐺 ↾s { 0 })) | |
23 | 22 | pgpfi1 19505 | . . 3 ⊢ (((𝐺 ↾s { 0 }) ∈ Grp ∧ 𝑃 ∈ ℙ ∧ 0 ∈ ℕ0) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
24 | 18, 19, 21, 23 | syl3anc 1368 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → ((♯‘(Base‘(𝐺 ↾s { 0 }))) = (𝑃↑0) → 𝑃 pGrp (𝐺 ↾s { 0 }))) |
25 | 16, 24 | mpd 15 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑃 ∈ ℙ) → 𝑃 pGrp (𝐺 ↾s { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4620 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 ℕcn 12209 ℕ0cn0 12469 ↑cexp 14024 ♯chash 14287 ℙcprime 16605 Basecbs 17143 ↾s cress 17172 0gc0g 17384 Grpcgrp 18853 SubGrpcsubg 19037 pGrp cpgp 19436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-disj 5104 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-oadd 8465 df-omul 8466 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-acn 9933 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-q 12930 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-mod 13832 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 df-dvds 16195 df-gcd 16433 df-prm 16606 df-pc 16769 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-0g 17386 df-mgm 18563 df-sgrp 18642 df-mnd 18658 df-submnd 18704 df-grp 18856 df-minusg 18857 df-sbg 18858 df-mulg 18986 df-subg 19040 df-eqg 19042 df-od 19438 df-pgp 19440 |
This theorem is referenced by: slwn0 19525 |
Copyright terms: Public domain | W3C validator |