Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1sub Structured version   Visualization version   GIF version

Theorem ressply1sub 33540
Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1sub.1 (𝜑𝑋𝐵)
ressply1sub.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
ressply1sub (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))

Proof of Theorem ressply1sub
StepHypRef Expression
1 ressply.1 . . . . 5 𝑆 = (Poly1𝑅)
2 ressply.2 . . . . 5 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . . 5 𝑈 = (Poly1𝐻)
4 ressply.4 . . . . 5 𝐵 = (Base‘𝑈)
5 ressply.5 . . . . 5 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . . 5 𝑃 = (𝑆s 𝐵)
7 ressply1sub.2 . . . . 5 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ressply1invg 33539 . . . 4 (𝜑 → ((invg𝑈)‘𝑌) = ((invg𝑃)‘𝑌))
98oveq2d 7368 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑈)((invg𝑃)‘𝑌)))
10 ressply1sub.1 . . . . 5 (𝜑𝑋𝐵)
111, 2, 3, 4subrgply1 22151 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
12 subrgsubg 20498 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
136subggrp 19048 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp)
145, 11, 12, 134syl 19 . . . . . . 7 (𝜑𝑃 ∈ Grp)
151, 2, 3, 4, 5, 6ressply1bas 22147 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
167, 15eleqtrd 2833 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑃))
17 eqid 2731 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
18 eqid 2731 . . . . . . . 8 (invg𝑃) = (invg𝑃)
1917, 18grpinvcl 18906 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2014, 16, 19syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2120, 15eleqtrrd 2834 . . . . 5 (𝜑 → ((invg𝑃)‘𝑌) ∈ 𝐵)
2210, 21jca 511 . . . 4 (𝜑 → (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵))
231, 2, 3, 4, 5, 6ressply1add 22148 . . . 4 ((𝜑 ∧ (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
2422, 23mpdan 687 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
259, 24eqtrd 2766 . 2 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
26 eqid 2731 . . . 4 (+g𝑈) = (+g𝑈)
27 eqid 2731 . . . 4 (invg𝑈) = (invg𝑈)
28 eqid 2731 . . . 4 (-g𝑈) = (-g𝑈)
294, 26, 27, 28grpsubval 18904 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3010, 7, 29syl2anc 584 . 2 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3110, 15eleqtrd 2833 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
32 eqid 2731 . . . 4 (+g𝑃) = (+g𝑃)
33 eqid 2731 . . . 4 (-g𝑃) = (-g𝑃)
3417, 32, 18, 33grpsubval 18904 . . 3 ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3531, 16, 34syl2anc 584 . 2 (𝜑 → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3625, 30, 353eqtr4d 2776 1 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  cfv 6487  (class class class)co 7352  Basecbs 17126  s cress 17147  +gcplusg 17167  Grpcgrp 18852  invgcminusg 18853  -gcsg 18854  SubGrpcsubg 19039  SubRingcsubrg 20490  Poly1cpl1 22095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-hom 17191  df-cco 17192  df-0g 17351  df-gsum 17352  df-prds 17357  df-pws 17359  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-subrng 20467  df-subrg 20491  df-lmod 20801  df-lss 20871  df-ascl 21798  df-psr 21852  df-mpl 21854  df-opsr 21856  df-psr1 22098  df-ply1 22100
This theorem is referenced by:  evls1subd  33542  irngss  33707
  Copyright terms: Public domain W3C validator