| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1sub | Structured version Visualization version GIF version | ||
| Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| ressply1sub.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ressply1sub.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ressply1sub | ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | ressply.2 | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | ressply.3 | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 4 | ressply.4 | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | ressply.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | ressply1.1 | . . . . 5 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 7 | ressply1sub.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ressply1invg 33533 | . . . 4 ⊢ (𝜑 → ((invg‘𝑈)‘𝑌) = ((invg‘𝑃)‘𝑌)) |
| 9 | 8 | oveq2d 7386 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌))) |
| 10 | ressply1sub.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4 | subrgply1 22152 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 12 | subrgsubg 20499 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 13 | 6 | subggrp 19045 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp) |
| 14 | 5, 11, 12, 13 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 15 | 1, 2, 3, 4, 5, 6 | ressply1bas 22148 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 16 | 7, 15 | eleqtrd 2830 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
| 17 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 18 | eqid 2729 | . . . . . . . 8 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 19 | 17, 18 | grpinvcl 18903 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
| 20 | 14, 16, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
| 21 | 20, 15 | eleqtrrd 2831 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ 𝐵) |
| 22 | 10, 21 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) |
| 23 | 1, 2, 3, 4, 5, 6 | ressply1add 22149 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 24 | 22, 23 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 25 | 9, 24 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 26 | eqid 2729 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 27 | eqid 2729 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
| 28 | eqid 2729 | . . . 4 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 29 | 4, 26, 27, 28 | grpsubval 18901 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
| 30 | 10, 7, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
| 31 | 10, 15 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 32 | eqid 2729 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 33 | eqid 2729 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 34 | 17, 32, 18, 33 | grpsubval 18901 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 35 | 31, 16, 34 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 36 | 25, 30, 35 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6500 (class class class)co 7370 Basecbs 17157 ↾s cress 17178 +gcplusg 17198 Grpcgrp 18849 invgcminusg 18850 -gcsg 18851 SubGrpcsubg 19036 SubRingcsubrg 20491 Poly1cpl1 22096 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-of 7634 df-ofr 7635 df-om 7824 df-1st 7948 df-2nd 7949 df-supp 8118 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8649 df-map 8779 df-pm 8780 df-ixp 8849 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-fsupp 9290 df-sup 9370 df-oi 9440 df-card 9871 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-7 12233 df-8 12234 df-9 12235 df-n0 12422 df-z 12509 df-dec 12629 df-uz 12773 df-fz 13448 df-fzo 13595 df-seq 13946 df-hash 14275 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-hom 17222 df-cco 17223 df-0g 17382 df-gsum 17383 df-prds 17388 df-pws 17390 df-mre 17525 df-mrc 17526 df-acs 17528 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-mhm 18694 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-mulg 18984 df-subg 19039 df-ghm 19129 df-cntz 19233 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-subrng 20468 df-subrg 20492 df-lmod 20802 df-lss 20872 df-ascl 21799 df-psr 21853 df-mpl 21855 df-opsr 21857 df-psr1 22099 df-ply1 22101 |
| This theorem is referenced by: evls1subd 33536 irngss 33677 |
| Copyright terms: Public domain | W3C validator |