Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ressply1sub Structured version   Visualization version   GIF version

Theorem ressply1sub 33534
Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.)
Hypotheses
Ref Expression
ressply.1 𝑆 = (Poly1𝑅)
ressply.2 𝐻 = (𝑅s 𝑇)
ressply.3 𝑈 = (Poly1𝐻)
ressply.4 𝐵 = (Base‘𝑈)
ressply.5 (𝜑𝑇 ∈ (SubRing‘𝑅))
ressply1.1 𝑃 = (𝑆s 𝐵)
ressply1sub.1 (𝜑𝑋𝐵)
ressply1sub.2 (𝜑𝑌𝐵)
Assertion
Ref Expression
ressply1sub (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))

Proof of Theorem ressply1sub
StepHypRef Expression
1 ressply.1 . . . . 5 𝑆 = (Poly1𝑅)
2 ressply.2 . . . . 5 𝐻 = (𝑅s 𝑇)
3 ressply.3 . . . . 5 𝑈 = (Poly1𝐻)
4 ressply.4 . . . . 5 𝐵 = (Base‘𝑈)
5 ressply.5 . . . . 5 (𝜑𝑇 ∈ (SubRing‘𝑅))
6 ressply1.1 . . . . 5 𝑃 = (𝑆s 𝐵)
7 ressply1sub.2 . . . . 5 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ressply1invg 33533 . . . 4 (𝜑 → ((invg𝑈)‘𝑌) = ((invg𝑃)‘𝑌))
98oveq2d 7386 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑈)((invg𝑃)‘𝑌)))
10 ressply1sub.1 . . . . 5 (𝜑𝑋𝐵)
111, 2, 3, 4subrgply1 22152 . . . . . . . 8 (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆))
12 subrgsubg 20499 . . . . . . . 8 (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆))
136subggrp 19045 . . . . . . . 8 (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp)
145, 11, 12, 134syl 19 . . . . . . 7 (𝜑𝑃 ∈ Grp)
151, 2, 3, 4, 5, 6ressply1bas 22148 . . . . . . . 8 (𝜑𝐵 = (Base‘𝑃))
167, 15eleqtrd 2830 . . . . . . 7 (𝜑𝑌 ∈ (Base‘𝑃))
17 eqid 2729 . . . . . . . 8 (Base‘𝑃) = (Base‘𝑃)
18 eqid 2729 . . . . . . . 8 (invg𝑃) = (invg𝑃)
1917, 18grpinvcl 18903 . . . . . . 7 ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2014, 16, 19syl2anc 584 . . . . . 6 (𝜑 → ((invg𝑃)‘𝑌) ∈ (Base‘𝑃))
2120, 15eleqtrrd 2831 . . . . 5 (𝜑 → ((invg𝑃)‘𝑌) ∈ 𝐵)
2210, 21jca 511 . . . 4 (𝜑 → (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵))
231, 2, 3, 4, 5, 6ressply1add 22149 . . . 4 ((𝜑 ∧ (𝑋𝐵 ∧ ((invg𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
2422, 23mpdan 687 . . 3 (𝜑 → (𝑋(+g𝑈)((invg𝑃)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
259, 24eqtrd 2764 . 2 (𝜑 → (𝑋(+g𝑈)((invg𝑈)‘𝑌)) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
26 eqid 2729 . . . 4 (+g𝑈) = (+g𝑈)
27 eqid 2729 . . . 4 (invg𝑈) = (invg𝑈)
28 eqid 2729 . . . 4 (-g𝑈) = (-g𝑈)
294, 26, 27, 28grpsubval 18901 . . 3 ((𝑋𝐵𝑌𝐵) → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3010, 7, 29syl2anc 584 . 2 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(+g𝑈)((invg𝑈)‘𝑌)))
3110, 15eleqtrd 2830 . . 3 (𝜑𝑋 ∈ (Base‘𝑃))
32 eqid 2729 . . . 4 (+g𝑃) = (+g𝑃)
33 eqid 2729 . . . 4 (-g𝑃) = (-g𝑃)
3417, 32, 18, 33grpsubval 18901 . . 3 ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3531, 16, 34syl2anc 584 . 2 (𝜑 → (𝑋(-g𝑃)𝑌) = (𝑋(+g𝑃)((invg𝑃)‘𝑌)))
3625, 30, 353eqtr4d 2774 1 (𝜑 → (𝑋(-g𝑈)𝑌) = (𝑋(-g𝑃)𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6500  (class class class)co 7370  Basecbs 17157  s cress 17178  +gcplusg 17198  Grpcgrp 18849  invgcminusg 18850  -gcsg 18851  SubGrpcsubg 19036  SubRingcsubrg 20491  Poly1cpl1 22096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-of 7634  df-ofr 7635  df-om 7824  df-1st 7948  df-2nd 7949  df-supp 8118  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8649  df-map 8779  df-pm 8780  df-ixp 8849  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-fsupp 9290  df-sup 9370  df-oi 9440  df-card 9871  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-nn 12166  df-2 12228  df-3 12229  df-4 12230  df-5 12231  df-6 12232  df-7 12233  df-8 12234  df-9 12235  df-n0 12422  df-z 12509  df-dec 12629  df-uz 12773  df-fz 13448  df-fzo 13595  df-seq 13946  df-hash 14275  df-struct 17095  df-sets 17112  df-slot 17130  df-ndx 17142  df-base 17158  df-ress 17179  df-plusg 17211  df-mulr 17212  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-hom 17222  df-cco 17223  df-0g 17382  df-gsum 17383  df-prds 17388  df-pws 17390  df-mre 17525  df-mrc 17526  df-acs 17528  df-mgm 18551  df-sgrp 18630  df-mnd 18646  df-mhm 18694  df-submnd 18695  df-grp 18852  df-minusg 18853  df-sbg 18854  df-mulg 18984  df-subg 19039  df-ghm 19129  df-cntz 19233  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-subrng 20468  df-subrg 20492  df-lmod 20802  df-lss 20872  df-ascl 21799  df-psr 21853  df-mpl 21855  df-opsr 21857  df-psr1 22099  df-ply1 22101
This theorem is referenced by:  evls1subd  33536  irngss  33677
  Copyright terms: Public domain W3C validator