| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ressply1sub | Structured version Visualization version GIF version | ||
| Description: A restricted polynomial algebra has the same subtraction operation. (Contributed by Thierry Arnoux, 30-Jan-2025.) |
| Ref | Expression |
|---|---|
| ressply.1 | ⊢ 𝑆 = (Poly1‘𝑅) |
| ressply.2 | ⊢ 𝐻 = (𝑅 ↾s 𝑇) |
| ressply.3 | ⊢ 𝑈 = (Poly1‘𝐻) |
| ressply.4 | ⊢ 𝐵 = (Base‘𝑈) |
| ressply.5 | ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) |
| ressply1.1 | ⊢ 𝑃 = (𝑆 ↾s 𝐵) |
| ressply1sub.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| ressply1sub.2 | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| ressply1sub | ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressply.1 | . . . . 5 ⊢ 𝑆 = (Poly1‘𝑅) | |
| 2 | ressply.2 | . . . . 5 ⊢ 𝐻 = (𝑅 ↾s 𝑇) | |
| 3 | ressply.3 | . . . . 5 ⊢ 𝑈 = (Poly1‘𝐻) | |
| 4 | ressply.4 | . . . . 5 ⊢ 𝐵 = (Base‘𝑈) | |
| 5 | ressply.5 | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubRing‘𝑅)) | |
| 6 | ressply1.1 | . . . . 5 ⊢ 𝑃 = (𝑆 ↾s 𝐵) | |
| 7 | ressply1sub.2 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ressply1invg 33539 | . . . 4 ⊢ (𝜑 → ((invg‘𝑈)‘𝑌) = ((invg‘𝑃)‘𝑌)) |
| 9 | 8 | oveq2d 7368 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌))) |
| 10 | ressply1sub.1 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 11 | 1, 2, 3, 4 | subrgply1 22151 | . . . . . . . 8 ⊢ (𝑇 ∈ (SubRing‘𝑅) → 𝐵 ∈ (SubRing‘𝑆)) |
| 12 | subrgsubg 20498 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubRing‘𝑆) → 𝐵 ∈ (SubGrp‘𝑆)) | |
| 13 | 6 | subggrp 19048 | . . . . . . . 8 ⊢ (𝐵 ∈ (SubGrp‘𝑆) → 𝑃 ∈ Grp) |
| 14 | 5, 11, 12, 13 | 4syl 19 | . . . . . . 7 ⊢ (𝜑 → 𝑃 ∈ Grp) |
| 15 | 1, 2, 3, 4, 5, 6 | ressply1bas 22147 | . . . . . . . 8 ⊢ (𝜑 → 𝐵 = (Base‘𝑃)) |
| 16 | 7, 15 | eleqtrd 2833 | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑃)) |
| 17 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 18 | eqid 2731 | . . . . . . . 8 ⊢ (invg‘𝑃) = (invg‘𝑃) | |
| 19 | 17, 18 | grpinvcl 18906 | . . . . . . 7 ⊢ ((𝑃 ∈ Grp ∧ 𝑌 ∈ (Base‘𝑃)) → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
| 20 | 14, 16, 19 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ (Base‘𝑃)) |
| 21 | 20, 15 | eleqtrrd 2834 | . . . . 5 ⊢ (𝜑 → ((invg‘𝑃)‘𝑌) ∈ 𝐵) |
| 22 | 10, 21 | jca 511 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) |
| 23 | 1, 2, 3, 4, 5, 6 | ressply1add 22148 | . . . 4 ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ ((invg‘𝑃)‘𝑌) ∈ 𝐵)) → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 24 | 22, 23 | mpdan 687 | . . 3 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑃)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 25 | 9, 24 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌)) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 26 | eqid 2731 | . . . 4 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
| 27 | eqid 2731 | . . . 4 ⊢ (invg‘𝑈) = (invg‘𝑈) | |
| 28 | eqid 2731 | . . . 4 ⊢ (-g‘𝑈) = (-g‘𝑈) | |
| 29 | 4, 26, 27, 28 | grpsubval 18904 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
| 30 | 10, 7, 29 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(+g‘𝑈)((invg‘𝑈)‘𝑌))) |
| 31 | 10, 15 | eleqtrd 2833 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑃)) |
| 32 | eqid 2731 | . . . 4 ⊢ (+g‘𝑃) = (+g‘𝑃) | |
| 33 | eqid 2731 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 34 | 17, 32, 18, 33 | grpsubval 18904 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑃) ∧ 𝑌 ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 35 | 31, 16, 34 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋(-g‘𝑃)𝑌) = (𝑋(+g‘𝑃)((invg‘𝑃)‘𝑌))) |
| 36 | 25, 30, 35 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝑋(-g‘𝑈)𝑌) = (𝑋(-g‘𝑃)𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 +gcplusg 17167 Grpcgrp 18852 invgcminusg 18853 -gcsg 18854 SubGrpcsubg 19039 SubRingcsubrg 20490 Poly1cpl1 22095 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-sbg 18857 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-subrng 20467 df-subrg 20491 df-lmod 20801 df-lss 20871 df-ascl 21798 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 |
| This theorem is referenced by: evls1subd 33542 irngss 33707 |
| Copyright terms: Public domain | W3C validator |