| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subg0cl | Structured version Visualization version GIF version | ||
| Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0cl.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19068 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 3 | eqid 2730 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 4 | eqid 2730 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
| 5 | 3, 4 | grpidcl 18904 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 8 | 1, 7 | subg0 19071 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 9 | 1 | subgbas 19069 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 10 | 6, 8, 9 | 3eltr4d 2844 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 0gc0g 17409 Grpcgrp 18872 SubGrpcsubg 19059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-subg 19062 |
| This theorem is referenced by: subgmulgcl 19078 issubg3 19083 issubg4 19084 subgint 19089 trivsubgd 19092 eqger 19117 ghmpreima 19177 subgga 19239 gasubg 19241 sylow1lem5 19539 sylow2blem2 19558 sylow2blem3 19559 fislw 19562 sylow3lem3 19566 sylow3lem4 19567 lsm01 19608 lsm02 19609 lsmdisj 19618 lsmdisj2 19619 pj1lid 19638 pj1rid 19639 dmdprdd 19938 dprdfid 19956 dprdfeq0 19961 dprdsubg 19963 dprdres 19967 dprdz 19969 dprdsn 19975 dmdprdsplitlem 19976 dprddisj2 19978 dprd2da 19981 dmdprdsplit2lem 19984 ablfacrp 20005 ablfacrp2 20006 ablfac1c 20010 ablfac1eu 20012 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem5 20018 pgpfaclem2 20021 pgpfaclem3 20022 prmgrpsimpgd 20053 primefld0cl 20722 abvres 20747 islss4 20875 dflidl2rng 21135 rnglidlrng 21164 rng2idl0 21184 rng2idlsubg0 21187 2idlcpblrng 21188 rng2idl1cntr 21222 subrgpsr 21894 mpllsslem 21916 0elcpmat 22616 opnsubg 24002 clssubg 24003 tgpconncompss 24008 plypf1 26124 dvply2g 26199 dvply2gOLD 26200 efsubm 26467 dchrptlem3 27184 gsumsubg 32993 elrgspnlem4 33203 subrdom 33242 nsgqus0 33388 nsgqusf1olem1 33391 ressply1evls1 33541 ressply10g 33543 ressply1invg 33545 vr1nz 33566 drgext0gsca 33594 fedgmullem2 33633 fldextrspunlsplem 33675 fldextrspunlsp 33676 algextdeglem4 33717 algextdeglem5 33718 rtelextdg2lem 33723 fsumcnsrcl 43162 cnsrplycl 43163 rngunsnply 43165 |
| Copyright terms: Public domain | W3C validator |