![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subg0cl | Structured version Visualization version GIF version |
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
subg0cl.i | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
2 | 1 | subggrp 19003 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
3 | eqid 2732 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
4 | eqid 2732 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
5 | 3, 4 | grpidcl 18846 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
6 | 2, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
8 | 1, 7 | subg0 19006 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
9 | 1 | subgbas 19004 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
10 | 6, 8, 9 | 3eltr4d 2848 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ‘cfv 6540 (class class class)co 7405 Basecbs 17140 ↾s cress 17169 0gc0g 17381 Grpcgrp 18815 SubGrpcsubg 18994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-subg 18997 |
This theorem is referenced by: subgmulgcl 19013 issubg3 19018 issubg4 19019 subgint 19024 trivsubgd 19027 eqger 19052 ghmpreima 19108 subgga 19158 gasubg 19160 sylow1lem5 19464 sylow2blem2 19483 sylow2blem3 19484 fislw 19487 sylow3lem3 19491 sylow3lem4 19492 lsm01 19533 lsm02 19534 lsmdisj 19543 lsmdisj2 19544 pj1lid 19563 pj1rid 19564 dmdprdd 19863 dprdfid 19881 dprdfeq0 19886 dprdsubg 19888 dprdres 19892 dprdz 19894 dprdsn 19900 dmdprdsplitlem 19901 dprddisj2 19903 dprd2da 19906 dmdprdsplit2lem 19909 ablfacrp 19930 ablfacrp2 19931 ablfac1c 19935 ablfac1eu 19937 pgpfac1lem3a 19940 pgpfac1lem3 19941 pgpfac1lem5 19943 pgpfaclem2 19946 pgpfaclem3 19947 prmgrpsimpgd 19978 primefld0cl 20414 abvres 20439 islss4 20565 dflidl2lem 20834 subrgpsr 21530 mpllsslem 21550 0elcpmat 22215 opnsubg 23603 clssubg 23604 tgpconncompss 23609 plypf1 25717 dvply2g 25789 efsubm 26051 dchrptlem3 26758 gsumsubg 32185 nsgqus0 32509 nsgqusf1olem1 32512 ressply10g 32644 ressply1invg 32646 drgext0gsca 32667 fedgmullem2 32703 algextdeglem1 32760 fsumcnsrcl 41893 cnsrplycl 41894 rngunsnply 41900 rnglidlrng 46740 rng2idl0 46743 rng2idlsubg0 46746 2idlcpblrng 46747 rng2idl1cntr 46770 |
Copyright terms: Public domain | W3C validator |