| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subg0cl | Structured version Visualization version GIF version | ||
| Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0cl.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19099 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 3 | eqid 2734 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 4 | eqid 2734 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
| 5 | 3, 4 | grpidcl 18935 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 8 | 1, 7 | subg0 19102 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 9 | 1 | subgbas 19100 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 10 | 6, 8, 9 | 3eltr4d 2848 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ‘cfv 6528 (class class class)co 7400 Basecbs 17215 ↾s cress 17238 0gc0g 17440 Grpcgrp 18903 SubGrpcsubg 19090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-er 8714 df-en 8955 df-dom 8956 df-sdom 8957 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-sets 17170 df-slot 17188 df-ndx 17200 df-base 17216 df-ress 17239 df-plusg 17271 df-0g 17442 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-grp 18906 df-subg 19093 |
| This theorem is referenced by: subgmulgcl 19109 issubg3 19114 issubg4 19115 subgint 19120 trivsubgd 19123 eqger 19148 ghmpreima 19208 subgga 19270 gasubg 19272 sylow1lem5 19570 sylow2blem2 19589 sylow2blem3 19590 fislw 19593 sylow3lem3 19597 sylow3lem4 19598 lsm01 19639 lsm02 19640 lsmdisj 19649 lsmdisj2 19650 pj1lid 19669 pj1rid 19670 dmdprdd 19969 dprdfid 19987 dprdfeq0 19992 dprdsubg 19994 dprdres 19998 dprdz 20000 dprdsn 20006 dmdprdsplitlem 20007 dprddisj2 20009 dprd2da 20012 dmdprdsplit2lem 20015 ablfacrp 20036 ablfacrp2 20037 ablfac1c 20041 ablfac1eu 20043 pgpfac1lem3a 20046 pgpfac1lem3 20047 pgpfac1lem5 20049 pgpfaclem2 20052 pgpfaclem3 20053 prmgrpsimpgd 20084 primefld0cl 20753 abvres 20778 islss4 20906 dflidl2rng 21166 rnglidlrng 21195 rng2idl0 21215 rng2idlsubg0 21218 2idlcpblrng 21219 rng2idl1cntr 21253 subrgpsr 21925 mpllsslem 21947 0elcpmat 22647 opnsubg 24033 clssubg 24034 tgpconncompss 24039 plypf1 26156 dvply2g 26231 dvply2gOLD 26232 efsubm 26498 dchrptlem3 27215 gsumsubg 32977 elrgspnlem4 33177 subrdom 33216 nsgqus0 33362 nsgqusf1olem1 33365 ressply10g 33516 ressply1invg 33518 drgext0gsca 33566 fedgmullem2 33605 fldextrspunlsplem 33649 fldextrspunlsp 33650 algextdeglem4 33689 algextdeglem5 33690 rtelextdg2lem 33695 fsumcnsrcl 43122 cnsrplycl 43123 rngunsnply 43125 |
| Copyright terms: Public domain | W3C validator |