| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subg0cl | Structured version Visualization version GIF version | ||
| Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0cl.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19026 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 3 | eqid 2729 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 4 | eqid 2729 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
| 5 | 3, 4 | grpidcl 18862 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 8 | 1, 7 | subg0 19029 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 9 | 1 | subgbas 19027 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 10 | 6, 8, 9 | 3eltr4d 2843 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 0gc0g 17361 Grpcgrp 18830 SubGrpcsubg 19017 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-subg 19020 |
| This theorem is referenced by: subgmulgcl 19036 issubg3 19041 issubg4 19042 subgint 19047 trivsubgd 19050 eqger 19075 ghmpreima 19135 subgga 19197 gasubg 19199 sylow1lem5 19499 sylow2blem2 19518 sylow2blem3 19519 fislw 19522 sylow3lem3 19526 sylow3lem4 19527 lsm01 19568 lsm02 19569 lsmdisj 19578 lsmdisj2 19579 pj1lid 19598 pj1rid 19599 dmdprdd 19898 dprdfid 19916 dprdfeq0 19921 dprdsubg 19923 dprdres 19927 dprdz 19929 dprdsn 19935 dmdprdsplitlem 19936 dprddisj2 19938 dprd2da 19941 dmdprdsplit2lem 19944 ablfacrp 19965 ablfacrp2 19966 ablfac1c 19970 ablfac1eu 19972 pgpfac1lem3a 19975 pgpfac1lem3 19976 pgpfac1lem5 19978 pgpfaclem2 19981 pgpfaclem3 19982 prmgrpsimpgd 20013 primefld0cl 20709 abvres 20734 islss4 20883 dflidl2rng 21143 rnglidlrng 21172 rng2idl0 21192 rng2idlsubg0 21195 2idlcpblrng 21196 rng2idl1cntr 21230 subrgpsr 21903 mpllsslem 21925 0elcpmat 22625 opnsubg 24011 clssubg 24012 tgpconncompss 24017 plypf1 26133 dvply2g 26208 dvply2gOLD 26209 efsubm 26476 dchrptlem3 27193 gsumsubg 33012 elrgspnlem4 33195 subrdom 33234 nsgqus0 33357 nsgqusf1olem1 33360 ressply1evls1 33510 ressply10g 33512 ressply1invg 33514 vr1nz 33535 drgext0gsca 33563 fedgmullem2 33602 fldextrspunlsplem 33644 fldextrspunlsp 33645 algextdeglem4 33686 algextdeglem5 33687 rtelextdg2lem 33692 fsumcnsrcl 43139 cnsrplycl 43140 rngunsnply 43142 |
| Copyright terms: Public domain | W3C validator |