MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subg0cl Structured version   Visualization version   GIF version

Theorem subg0cl 19039
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subg0cl.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0cl (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)

Proof of Theorem subg0cl
StepHypRef Expression
1 eqid 2730 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 19034 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
3 eqid 2730 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
4 eqid 2730 . . . 4 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
53, 4grpidcl 18870 . . 3 ((𝐺s 𝑆) ∈ Grp → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
62, 5syl 17 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
7 subg0cl.i . . 3 0 = (0g𝐺)
81, 7subg0 19037 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
91subgbas 19035 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
106, 8, 93eltr4d 2844 1 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2110  cfv 6477  (class class class)co 7341  Basecbs 17112  s cress 17133  0gc0g 17335  Grpcgrp 18838  SubGrpcsubg 19025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-grp 18841  df-subg 19028
This theorem is referenced by:  subgmulgcl  19044  issubg3  19049  issubg4  19050  subgint  19055  trivsubgd  19058  eqger  19083  ghmpreima  19143  subgga  19205  gasubg  19207  sylow1lem5  19507  sylow2blem2  19526  sylow2blem3  19527  fislw  19530  sylow3lem3  19534  sylow3lem4  19535  lsm01  19576  lsm02  19577  lsmdisj  19586  lsmdisj2  19587  pj1lid  19606  pj1rid  19607  dmdprdd  19906  dprdfid  19924  dprdfeq0  19929  dprdsubg  19931  dprdres  19935  dprdz  19937  dprdsn  19943  dmdprdsplitlem  19944  dprddisj2  19946  dprd2da  19949  dmdprdsplit2lem  19952  ablfacrp  19973  ablfacrp2  19974  ablfac1c  19978  ablfac1eu  19980  pgpfac1lem3a  19983  pgpfac1lem3  19984  pgpfac1lem5  19986  pgpfaclem2  19989  pgpfaclem3  19990  prmgrpsimpgd  20021  primefld0cl  20714  abvres  20739  islss4  20888  dflidl2rng  21148  rnglidlrng  21177  rng2idl0  21197  rng2idlsubg0  21200  2idlcpblrng  21201  rng2idl1cntr  21235  subrgpsr  21908  mpllsslem  21930  0elcpmat  22630  opnsubg  24016  clssubg  24017  tgpconncompss  24022  plypf1  26137  dvply2g  26212  dvply2gOLD  26213  efsubm  26480  dchrptlem3  27197  gsumsubg  33016  elrgspnlem4  33202  subrdom  33241  nsgqus0  33365  nsgqusf1olem1  33368  ressply1evls1  33518  ressply10g  33520  ressply1invg  33522  vr1nz  33544  drgext0gsca  33594  fedgmullem2  33633  fldextrspunlsplem  33676  fldextrspunlsp  33677  extdgfialglem1  33695  extdgfialglem2  33696  algextdeglem4  33723  algextdeglem5  33724  rtelextdg2lem  33729  fsumcnsrcl  43178  cnsrplycl  43179  rngunsnply  43181
  Copyright terms: Public domain W3C validator