MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subg0cl Structured version   Visualization version   GIF version

Theorem subg0cl 18279
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subg0cl.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0cl (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)

Proof of Theorem subg0cl
StepHypRef Expression
1 eqid 2819 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 18274 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
3 eqid 2819 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
4 eqid 2819 . . . 4 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
53, 4grpidcl 18123 . . 3 ((𝐺s 𝑆) ∈ Grp → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
62, 5syl 17 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
7 subg0cl.i . . 3 0 = (0g𝐺)
81, 7subg0 18277 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
91subgbas 18275 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
106, 8, 93eltr4d 2926 1 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1531  wcel 2108  cfv 6348  (class class class)co 7148  Basecbs 16475  s cress 16476  0gc0g 16705  Grpcgrp 18095  SubGrpcsubg 18265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-subg 18268
This theorem is referenced by:  subgmulgcl  18284  issubg3  18289  issubg4  18290  subgint  18295  trivsubgd  18297  eqger  18322  ghmpreima  18372  subgga  18422  gasubg  18424  sylow1lem5  18719  sylow2blem2  18738  sylow2blem3  18739  fislw  18742  sylow3lem3  18746  sylow3lem4  18747  lsm01  18789  lsm02  18790  lsmdisj  18799  lsmdisj2  18800  pj1lid  18819  pj1rid  18820  dmdprdd  19113  dprdfid  19131  dprdfeq0  19136  dprdsubg  19138  dprdres  19142  dprdz  19144  dprdsn  19150  dmdprdsplitlem  19151  dprddisj2  19153  dprd2da  19156  dmdprdsplit2lem  19159  ablfacrp  19180  ablfacrp2  19181  ablfac1c  19185  ablfac1eu  19187  pgpfac1lem3a  19190  pgpfac1lem3  19191  pgpfac1lem5  19193  pgpfaclem2  19196  pgpfaclem3  19197  prmgrpsimpgd  19228  primefld0cl  19577  abvres  19602  islss4  19726  subrgpsr  20191  mpllsslem  20207  0elcpmat  21322  opnsubg  22708  clssubg  22709  tgpconncompss  22714  plypf1  24794  dvply2g  24866  efsubm  25127  dchrptlem3  25834  gsumsubg  30677  drgext0gsca  30987  fedgmullem2  31019  fsumcnsrcl  39757  cnsrplycl  39758  rngunsnply  39764
  Copyright terms: Public domain W3C validator