MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subg0cl Structured version   Visualization version   GIF version

Theorem subg0cl 18678
Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypothesis
Ref Expression
subg0cl.i 0 = (0g𝐺)
Assertion
Ref Expression
subg0cl (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)

Proof of Theorem subg0cl
StepHypRef Expression
1 eqid 2738 . . . 4 (𝐺s 𝑆) = (𝐺s 𝑆)
21subggrp 18673 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺s 𝑆) ∈ Grp)
3 eqid 2738 . . . 4 (Base‘(𝐺s 𝑆)) = (Base‘(𝐺s 𝑆))
4 eqid 2738 . . . 4 (0g‘(𝐺s 𝑆)) = (0g‘(𝐺s 𝑆))
53, 4grpidcl 18522 . . 3 ((𝐺s 𝑆) ∈ Grp → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
62, 5syl 17 . 2 (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺s 𝑆)) ∈ (Base‘(𝐺s 𝑆)))
7 subg0cl.i . . 3 0 = (0g𝐺)
81, 7subg0 18676 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺s 𝑆)))
91subgbas 18674 . 2 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺s 𝑆)))
106, 8, 93eltr4d 2854 1 (𝑆 ∈ (SubGrp‘𝐺) → 0𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  0gc0g 17067  Grpcgrp 18492  SubGrpcsubg 18664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-subg 18667
This theorem is referenced by:  subgmulgcl  18683  issubg3  18688  issubg4  18689  subgint  18694  trivsubgd  18696  eqger  18721  ghmpreima  18771  subgga  18821  gasubg  18823  sylow1lem5  19122  sylow2blem2  19141  sylow2blem3  19142  fislw  19145  sylow3lem3  19149  sylow3lem4  19150  lsm01  19192  lsm02  19193  lsmdisj  19202  lsmdisj2  19203  pj1lid  19222  pj1rid  19223  dmdprdd  19517  dprdfid  19535  dprdfeq0  19540  dprdsubg  19542  dprdres  19546  dprdz  19548  dprdsn  19554  dmdprdsplitlem  19555  dprddisj2  19557  dprd2da  19560  dmdprdsplit2lem  19563  ablfacrp  19584  ablfacrp2  19585  ablfac1c  19589  ablfac1eu  19591  pgpfac1lem3a  19594  pgpfac1lem3  19595  pgpfac1lem5  19597  pgpfaclem2  19600  pgpfaclem3  19601  prmgrpsimpgd  19632  primefld0cl  19989  abvres  20014  islss4  20139  subrgpsr  21098  mpllsslem  21116  0elcpmat  21779  opnsubg  23167  clssubg  23168  tgpconncompss  23173  plypf1  25278  dvply2g  25350  efsubm  25612  dchrptlem3  26319  gsumsubg  31208  nsgqus0  31497  nsgqusf1olem1  31500  drgext0gsca  31581  fedgmullem2  31613  fsumcnsrcl  40907  cnsrplycl  40908  rngunsnply  40914
  Copyright terms: Public domain W3C validator