| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subg0cl | Structured version Visualization version GIF version | ||
| Description: The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| subg0cl.i | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| subg0cl | ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (𝐺 ↾s 𝑆) = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subggrp 19112 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ↾s 𝑆) ∈ Grp) |
| 3 | eqid 2735 | . . . 4 ⊢ (Base‘(𝐺 ↾s 𝑆)) = (Base‘(𝐺 ↾s 𝑆)) | |
| 4 | eqid 2735 | . . . 4 ⊢ (0g‘(𝐺 ↾s 𝑆)) = (0g‘(𝐺 ↾s 𝑆)) | |
| 5 | 3, 4 | grpidcl 18948 | . . 3 ⊢ ((𝐺 ↾s 𝑆) ∈ Grp → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (0g‘(𝐺 ↾s 𝑆)) ∈ (Base‘(𝐺 ↾s 𝑆))) |
| 7 | subg0cl.i | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 8 | 1, 7 | subg0 19115 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘(𝐺 ↾s 𝑆))) |
| 9 | 1 | subgbas 19113 | . 2 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘(𝐺 ↾s 𝑆))) |
| 10 | 6, 8, 9 | 3eltr4d 2849 | 1 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 0gc0g 17453 Grpcgrp 18916 SubGrpcsubg 19103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-subg 19106 |
| This theorem is referenced by: subgmulgcl 19122 issubg3 19127 issubg4 19128 subgint 19133 trivsubgd 19136 eqger 19161 ghmpreima 19221 subgga 19283 gasubg 19285 sylow1lem5 19583 sylow2blem2 19602 sylow2blem3 19603 fislw 19606 sylow3lem3 19610 sylow3lem4 19611 lsm01 19652 lsm02 19653 lsmdisj 19662 lsmdisj2 19663 pj1lid 19682 pj1rid 19683 dmdprdd 19982 dprdfid 20000 dprdfeq0 20005 dprdsubg 20007 dprdres 20011 dprdz 20013 dprdsn 20019 dmdprdsplitlem 20020 dprddisj2 20022 dprd2da 20025 dmdprdsplit2lem 20028 ablfacrp 20049 ablfacrp2 20050 ablfac1c 20054 ablfac1eu 20056 pgpfac1lem3a 20059 pgpfac1lem3 20060 pgpfac1lem5 20062 pgpfaclem2 20065 pgpfaclem3 20066 prmgrpsimpgd 20097 primefld0cl 20766 abvres 20791 islss4 20919 dflidl2rng 21179 rnglidlrng 21208 rng2idl0 21228 rng2idlsubg0 21231 2idlcpblrng 21232 rng2idl1cntr 21266 subrgpsr 21938 mpllsslem 21960 0elcpmat 22660 opnsubg 24046 clssubg 24047 tgpconncompss 24052 plypf1 26169 dvply2g 26244 dvply2gOLD 26245 efsubm 26512 dchrptlem3 27229 gsumsubg 33040 elrgspnlem4 33240 subrdom 33279 nsgqus0 33425 nsgqusf1olem1 33428 ressply1evls1 33578 ressply10g 33580 ressply1invg 33582 vr1nz 33603 drgext0gsca 33631 fedgmullem2 33670 fldextrspunlsplem 33714 fldextrspunlsp 33715 algextdeglem4 33754 algextdeglem5 33755 rtelextdg2lem 33760 fsumcnsrcl 43190 cnsrplycl 43191 rngunsnply 43193 |
| Copyright terms: Public domain | W3C validator |