Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subhalfhalf | Structured version Visualization version GIF version |
Description: Subtracting the half of a number from the number yields the half of the number. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
subhalfhalf | ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 2cnd 12157 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
3 | 2ne0 12183 | . . . . . 6 ⊢ 2 ≠ 0 | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (𝐴 ∈ ℂ → 2 ≠ 0) |
5 | 1, 2, 4 | divcan1d 11858 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = 𝐴) |
6 | 5 | eqcomd 2743 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 = ((𝐴 / 2) · 2)) |
7 | 6 | oveq1d 7357 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (((𝐴 / 2) · 2) − (𝐴 / 2))) |
8 | halfcl 12304 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) | |
9 | 8, 2 | mulcomd 11102 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴 / 2) · 2) = (2 · (𝐴 / 2))) |
10 | 9 | oveq1d 7357 | . 2 ⊢ (𝐴 ∈ ℂ → (((𝐴 / 2) · 2) − (𝐴 / 2)) = ((2 · (𝐴 / 2)) − (𝐴 / 2))) |
11 | 2, 8 | mulsubfacd 11542 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = ((2 − 1) · (𝐴 / 2))) |
12 | 2m1e1 12205 | . . . . 5 ⊢ (2 − 1) = 1 | |
13 | 12 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ ℂ → (2 − 1) = 1) |
14 | 13 | oveq1d 7357 | . . 3 ⊢ (𝐴 ∈ ℂ → ((2 − 1) · (𝐴 / 2)) = (1 · (𝐴 / 2))) |
15 | 8 | mulid2d 11099 | . . 3 ⊢ (𝐴 ∈ ℂ → (1 · (𝐴 / 2)) = (𝐴 / 2)) |
16 | 11, 14, 15 | 3eqtrd 2781 | . 2 ⊢ (𝐴 ∈ ℂ → ((2 · (𝐴 / 2)) − (𝐴 / 2)) = (𝐴 / 2)) |
17 | 7, 10, 16 | 3eqtrd 2781 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 − (𝐴 / 2)) = (𝐴 / 2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 (class class class)co 7342 ℂcc 10975 0cc0 10977 1c1 10978 · cmul 10982 − cmin 11311 / cdiv 11738 2c2 12134 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-mpt 5181 df-id 5523 df-po 5537 df-so 5538 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-2 12142 |
This theorem is referenced by: fldiv4lem1div2uz2 13662 gausslemma2dlem1a 26619 |
Copyright terms: Public domain | W3C validator |