Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > halfcl | Structured version Visualization version GIF version |
Description: Closure of half of a number. (Contributed by NM, 1-Jan-2006.) |
Ref | Expression |
---|---|
halfcl | ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12048 | . 2 ⊢ 2 ∈ ℂ | |
2 | 2ne0 12077 | . 2 ⊢ 2 ≠ 0 | |
3 | divcl 11639 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝐴 / 2) ∈ ℂ) | |
4 | 1, 2, 3 | mp3an23 1452 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7275 ℂcc 10869 0cc0 10871 / cdiv 11632 2c2 12028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 |
This theorem is referenced by: halfaddsubcl 12205 subhalfhalf 12207 halfcld 12218 geo2sum 15585 efhalfpi 25628 cosq14gt0 25667 cosq14ge0 25668 abssinper 25677 coseq1 25681 efeq1 25684 sqrtcn 25903 1cubr 25992 dquartlem1 26001 acosf 26024 atanf 26030 acosneg 26037 acoscos 26043 acos1 26045 sinacos 26055 atanneg 26057 atancj 26060 efiatan 26062 efiatan2 26067 2efiatan 26068 atantan 26073 atanbndlem 26075 dvatan 26085 atantayl 26087 gausslemma2dlem1a 26513 minvecolem2 29237 sin2h 35767 cos2h 35768 dirkercncflem2 43645 fourierdlem58 43705 |
Copyright terms: Public domain | W3C validator |