| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > halfcl | Structured version Visualization version GIF version | ||
| Description: Closure of half of a number. (Contributed by NM, 1-Jan-2006.) |
| Ref | Expression |
|---|---|
| halfcl | ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12200 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | 2ne0 12229 | . 2 ⊢ 2 ≠ 0 | |
| 3 | divcl 11782 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → (𝐴 / 2) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp3an23 1455 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 / 2) ∈ ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 (class class class)co 7346 ℂcc 11004 0cc0 11006 / cdiv 11774 2c2 12180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 |
| This theorem is referenced by: halfaddsubcl 12353 subhalfhalf 12355 halfcld 12366 geo2sum 15780 efhalfpi 26408 cosq14gt0 26447 cosq14ge0 26448 abssinper 26458 coseq1 26462 efeq1 26465 sqrtcn 26688 1cubr 26780 dquartlem1 26789 acosf 26812 atanf 26818 acosneg 26825 acoscos 26831 acos1 26833 sinacos 26843 atanneg 26845 atancj 26848 efiatan 26850 efiatan2 26855 2efiatan 26856 atantan 26861 atanbndlem 26863 dvatan 26873 atantayl 26875 gausslemma2dlem1a 27304 minvecolem2 30853 sin2h 37656 cos2h 37657 dirkercncflem2 46148 fourierdlem58 46208 tannpoly 46927 |
| Copyright terms: Public domain | W3C validator |