MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2uz2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2uz2 13873
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
fldiv4lem1div2uz2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 12886 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zre 12615 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 id 22 . . . 4 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 4re 12348 . . . . 5 4 ∈ ℝ
54a1i 11 . . . 4 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6 4ne0 12372 . . . . 5 4 ≠ 0
76a1i 11 . . . 4 (𝑁 ∈ ℝ → 4 ≠ 0)
83, 5, 7redivcld 12093 . . 3 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
9 flle 13836 . . 3 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
101, 2, 8, 94syl 19 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
11 1red 11260 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
12 eluzelre 12887 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
13 rehalfcl 12490 . . . . 5 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
141, 2, 133syl 18 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
15 2rp 13037 . . . . . . 7 2 ∈ ℝ+
1615a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
17 eluzle 12889 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
18 divge1 13101 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2))
1916, 12, 17, 18syl3anc 1370 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
20 eluzelcn 12888 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
21 subhalfhalf 12498 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2220, 21syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2319, 22breqtrrd 5176 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 − (𝑁 / 2)))
2411, 12, 14, 23lesubd 11865 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (𝑁 − 1))
25 2t2e4 12428 . . . . . . . . 9 (2 · 2) = 4
2625eqcomi 2744 . . . . . . . 8 4 = (2 · 2)
2726a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 4 = (2 · 2))
2827oveq2d 7447 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = (𝑁 / (2 · 2)))
29 2cnne0 12474 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
3029a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
31 divdiv1 11976 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3220, 30, 30, 31syl3anc 1370 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3328, 32eqtr4d 2778 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2))
3433breq1d 5158 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
35 peano2rem 11574 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
3612, 35syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ)
3714, 36, 16lediv1d 13121 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
3834, 37bitr4d 282 . . 3 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1)))
3924, 38mpbird 257 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2))
408flcld 13835 . . . . 5 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
4140zred 12720 . . . 4 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
4235rehalfcld 12511 . . . 4 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
4341, 8, 423jca 1127 . . 3 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
44 letr 11353 . . 3 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
451, 2, 43, 444syl 19 . 2 (𝑁 ∈ (ℤ‘2) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
4610, 39, 45mp2and 699 1 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   · cmul 11158  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  4c4 12321  cz 12611  cuz 12876  +crp 13032  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829
This theorem is referenced by:  fldiv4lem1div2  13874  gausslemma2dlem4  27428
  Copyright terms: Public domain W3C validator