MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fldiv4lem1div2uz2 Structured version   Visualization version   GIF version

Theorem fldiv4lem1div2uz2 13484
Description: The floor of an integer greater than 1, divided by 4 is less than or equal to the half of the integer minus 1. (Contributed by AV, 5-Jul-2021.) (Proof shortened by AV, 9-Jul-2022.)
Assertion
Ref Expression
fldiv4lem1div2uz2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))

Proof of Theorem fldiv4lem1div2uz2
StepHypRef Expression
1 eluzelz 12521 . . 3 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℤ)
2 zre 12253 . . . 4 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 id 22 . . . . 5 (𝑁 ∈ ℝ → 𝑁 ∈ ℝ)
4 4re 11987 . . . . . 6 4 ∈ ℝ
54a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ∈ ℝ)
6 4ne0 12011 . . . . . 6 4 ≠ 0
76a1i 11 . . . . 5 (𝑁 ∈ ℝ → 4 ≠ 0)
83, 5, 7redivcld 11733 . . . 4 (𝑁 ∈ ℝ → (𝑁 / 4) ∈ ℝ)
92, 8syl 17 . . 3 (𝑁 ∈ ℤ → (𝑁 / 4) ∈ ℝ)
10 flle 13447 . . 3 ((𝑁 / 4) ∈ ℝ → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
111, 9, 103syl 18 . 2 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ (𝑁 / 4))
12 1red 10907 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ∈ ℝ)
13 eluzelre 12522 . . . 4 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℝ)
14 rehalfcl 12129 . . . . 5 (𝑁 ∈ ℝ → (𝑁 / 2) ∈ ℝ)
151, 2, 143syl 18 . . . 4 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ∈ ℝ)
16 2rp 12664 . . . . . . 7 2 ∈ ℝ+
1716a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ∈ ℝ+)
18 eluzle 12524 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 2 ≤ 𝑁)
19 divge1 12727 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ ∧ 2 ≤ 𝑁) → 1 ≤ (𝑁 / 2))
2017, 13, 18, 19syl3anc 1369 . . . . 5 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 / 2))
21 eluzelcn 12523 . . . . . 6 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
22 subhalfhalf 12137 . . . . . 6 (𝑁 ∈ ℂ → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2321, 22syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − (𝑁 / 2)) = (𝑁 / 2))
2420, 23breqtrrd 5098 . . . 4 (𝑁 ∈ (ℤ‘2) → 1 ≤ (𝑁 − (𝑁 / 2)))
2512, 13, 15, 24lesubd 11509 . . 3 (𝑁 ∈ (ℤ‘2) → (𝑁 / 2) ≤ (𝑁 − 1))
26 2t2e4 12067 . . . . . . . . 9 (2 · 2) = 4
2726eqcomi 2747 . . . . . . . 8 4 = (2 · 2)
2827a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → 4 = (2 · 2))
2928oveq2d 7271 . . . . . 6 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = (𝑁 / (2 · 2)))
30 2cnne0 12113 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
3130a1i 11 . . . . . . 7 (𝑁 ∈ (ℤ‘2) → (2 ∈ ℂ ∧ 2 ≠ 0))
32 divdiv1 11616 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3321, 31, 31, 32syl3anc 1369 . . . . . 6 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) / 2) = (𝑁 / (2 · 2)))
3429, 33eqtr4d 2781 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) = ((𝑁 / 2) / 2))
3534breq1d 5080 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
36 peano2rem 11218 . . . . . 6 (𝑁 ∈ ℝ → (𝑁 − 1) ∈ ℝ)
3713, 36syl 17 . . . . 5 (𝑁 ∈ (ℤ‘2) → (𝑁 − 1) ∈ ℝ)
3815, 37, 17lediv1d 12747 . . . 4 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 2) ≤ (𝑁 − 1) ↔ ((𝑁 / 2) / 2) ≤ ((𝑁 − 1) / 2)))
3935, 38bitr4d 281 . . 3 (𝑁 ∈ (ℤ‘2) → ((𝑁 / 4) ≤ ((𝑁 − 1) / 2) ↔ (𝑁 / 2) ≤ (𝑁 − 1)))
4025, 39mpbird 256 . 2 (𝑁 ∈ (ℤ‘2) → (𝑁 / 4) ≤ ((𝑁 − 1) / 2))
418flcld 13446 . . . . . 6 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℤ)
4241zred 12355 . . . . 5 (𝑁 ∈ ℝ → (⌊‘(𝑁 / 4)) ∈ ℝ)
4336rehalfcld 12150 . . . . 5 (𝑁 ∈ ℝ → ((𝑁 − 1) / 2) ∈ ℝ)
4442, 8, 433jca 1126 . . . 4 (𝑁 ∈ ℝ → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
451, 2, 443syl 18 . . 3 (𝑁 ∈ (ℤ‘2) → ((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ))
46 letr 10999 . . 3 (((⌊‘(𝑁 / 4)) ∈ ℝ ∧ (𝑁 / 4) ∈ ℝ ∧ ((𝑁 − 1) / 2) ∈ ℝ) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
4745, 46syl 17 . 2 (𝑁 ∈ (ℤ‘2) → (((⌊‘(𝑁 / 4)) ≤ (𝑁 / 4) ∧ (𝑁 / 4) ≤ ((𝑁 − 1) / 2)) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2)))
4811, 40, 47mp2and 695 1 (𝑁 ∈ (ℤ‘2) → (⌊‘(𝑁 / 4)) ≤ ((𝑁 − 1) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  4c4 11960  cz 12249  cuz 12511  +crp 12659  cfl 13438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fl 13440
This theorem is referenced by:  fldiv4lem1div2  13485  gausslemma2dlem4  26422
  Copyright terms: Public domain W3C validator