MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  arisum2 Structured version   Visualization version   GIF version

Theorem arisum2 15803
Description: Arithmetic series sum of the first 𝑁 nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Distinct variable group:   𝑘,𝑁

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 12420 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 nnm1nn0 12459 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
3 nn0uz 12811 . . . . . 6 0 = (ℤ‘0)
42, 3eleqtrdi 2838 . . . . 5 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ (ℤ‘0))
5 elfznn0 13557 . . . . . . 7 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
65adantl 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0)
76nn0cnd 12481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ)
8 id 22 . . . . 5 (𝑘 = 0 → 𝑘 = 0)
94, 7, 8fsum1p 15695 . . . 4 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘))
10 1e0p1 12667 . . . . . . . . 9 1 = (0 + 1)
1110oveq1i 7379 . . . . . . . 8 (1...(𝑁 − 1)) = ((0 + 1)...(𝑁 − 1))
1211sumeq1i 15639 . . . . . . 7 Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘
1312oveq2i 7380 . . . . . 6 (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘)
14 fzfid 13914 . . . . . . . 8 (𝑁 ∈ ℕ → (1...(𝑁 − 1)) ∈ Fin)
15 elfznn 13490 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
1615adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ)
1716nncnd 12178 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ)
1814, 17fsumcl 15675 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 ∈ ℂ)
1918addlidd 11351 . . . . . 6 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
2013, 19eqtr3id 2778 . . . . 5 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘)
21 arisum 15802 . . . . . . 7 ((𝑁 − 1) ∈ ℕ0 → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
222, 21syl 17 . . . . . 6 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2))
23 nncn 12170 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
24232timesd 12401 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (2 · 𝑁) = (𝑁 + 𝑁))
2524oveq2d 7385 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = ((𝑁↑2) − (𝑁 + 𝑁)))
2623sqcld 14085 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁↑2) ∈ ℂ)
2726, 23, 23subsub4d 11540 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − 𝑁) = ((𝑁↑2) − (𝑁 + 𝑁)))
2825, 27eqtr4d 2767 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − (2 · 𝑁)) = (((𝑁↑2) − 𝑁) − 𝑁))
2928oveq1d 7384 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − (2 · 𝑁)) + 1) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
30 binom2sub1 14162 . . . . . . . . . . 11 (𝑁 ∈ ℂ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3123, 30syl 17 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 · 𝑁)) + 1))
3226, 23subcld 11509 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁↑2) − 𝑁) ∈ ℂ)
33 1cnd 11145 . . . . . . . . . . 11 (𝑁 ∈ ℕ → 1 ∈ ℂ)
3432, 23, 33subsubd 11537 . . . . . . . . . 10 (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1))
3529, 31, 343eqtr4d 2774 . . . . . . . . 9 (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − 𝑁) − (𝑁 − 1)))
3635oveq1d 7384 . . . . . . . 8 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)))
37 ax-1cn 11102 . . . . . . . . . 10 1 ∈ ℂ
38 subcl 11396 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 − 1) ∈ ℂ)
3923, 37, 38sylancl 586 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
4032, 39npcand 11513 . . . . . . . 8 (𝑁 ∈ ℕ → ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4136, 40eqtrd 2764 . . . . . . 7 (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁))
4241oveq1d 7384 . . . . . 6 (𝑁 ∈ ℕ → ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2) = (((𝑁↑2) − 𝑁) / 2))
4322, 42eqtrd 2764 . . . . 5 (𝑁 ∈ ℕ → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
4420, 43eqtrd 2764 . . . 4 (𝑁 ∈ ℕ → (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) = (((𝑁↑2) − 𝑁) / 2))
459, 44eqtrd 2764 . . 3 (𝑁 ∈ ℕ → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
46 oveq1 7376 . . . . . . . 8 (𝑁 = 0 → (𝑁 − 1) = (0 − 1))
4746oveq2d 7385 . . . . . . 7 (𝑁 = 0 → (0...(𝑁 − 1)) = (0...(0 − 1)))
48 0re 11152 . . . . . . . . 9 0 ∈ ℝ
49 ltm1 12000 . . . . . . . . 9 (0 ∈ ℝ → (0 − 1) < 0)
5048, 49ax-mp 5 . . . . . . . 8 (0 − 1) < 0
51 0z 12516 . . . . . . . . 9 0 ∈ ℤ
52 peano2zm 12552 . . . . . . . . . 10 (0 ∈ ℤ → (0 − 1) ∈ ℤ)
5351, 52ax-mp 5 . . . . . . . . 9 (0 − 1) ∈ ℤ
54 fzn 13477 . . . . . . . . 9 ((0 ∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅))
5551, 53, 54mp2an 692 . . . . . . . 8 ((0 − 1) < 0 ↔ (0...(0 − 1)) = ∅)
5650, 55mpbi 230 . . . . . . 7 (0...(0 − 1)) = ∅
5747, 56eqtrdi 2780 . . . . . 6 (𝑁 = 0 → (0...(𝑁 − 1)) = ∅)
5857sumeq1d 15642 . . . . 5 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ∅ 𝑘)
59 sum0 15663 . . . . 5 Σ𝑘 ∈ ∅ 𝑘 = 0
6058, 59eqtrdi 2780 . . . 4 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = 0)
61 sq0i 14134 . . . . . . . 8 (𝑁 = 0 → (𝑁↑2) = 0)
62 id 22 . . . . . . . 8 (𝑁 = 0 → 𝑁 = 0)
6361, 62oveq12d 7387 . . . . . . 7 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = (0 − 0))
64 0m0e0 12277 . . . . . . 7 (0 − 0) = 0
6563, 64eqtrdi 2780 . . . . . 6 (𝑁 = 0 → ((𝑁↑2) − 𝑁) = 0)
6665oveq1d 7384 . . . . 5 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = (0 / 2))
67 2cn 12237 . . . . . 6 2 ∈ ℂ
68 2ne0 12266 . . . . . 6 2 ≠ 0
6967, 68div0i 11892 . . . . 5 (0 / 2) = 0
7066, 69eqtrdi 2780 . . . 4 (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = 0)
7160, 70eqtr4d 2767 . . 3 (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
7245, 71jaoi 857 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
731, 72sylbi 217 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  c0 4292   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  Σcsu 15628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629
This theorem is referenced by:  birthdaylem3  26839
  Copyright terms: Public domain W3C validator