Proof of Theorem arisum2
Step | Hyp | Ref
| Expression |
1 | | elnn0 12235 |
. 2
⊢ (𝑁 ∈ ℕ0
↔ (𝑁 ∈ ℕ
∨ 𝑁 =
0)) |
2 | | nnm1nn0 12274 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℕ0) |
3 | | nn0uz 12620 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
4 | 2, 3 | eleqtrdi 2849 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
(ℤ≥‘0)) |
5 | | elfznn0 13349 |
. . . . . . 7
⊢ (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0) |
6 | 5 | adantl 482 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℕ0) |
7 | 6 | nn0cnd 12295 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
8 | | id 22 |
. . . . 5
⊢ (𝑘 = 0 → 𝑘 = 0) |
9 | 4, 7, 8 | fsum1p 15465 |
. . . 4
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘)) |
10 | | 1e0p1 12479 |
. . . . . . . . 9
⊢ 1 = (0 +
1) |
11 | 10 | oveq1i 7285 |
. . . . . . . 8
⊢
(1...(𝑁 − 1))
= ((0 + 1)...(𝑁 −
1)) |
12 | 11 | sumeq1i 15410 |
. . . . . . 7
⊢
Σ𝑘 ∈
(1...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘 |
13 | 12 | oveq2i 7286 |
. . . . . 6
⊢ (0 +
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = (0 + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))𝑘) |
14 | | fzfid 13693 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(1...(𝑁 − 1)) ∈
Fin) |
15 | | elfznn 13285 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ) |
16 | 15 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ) |
17 | 16 | nncnd 11989 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ) |
18 | 14, 17 | fsumcl 15445 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 ∈ ℂ) |
19 | 18 | addid2d 11176 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) |
20 | 13, 19 | eqtr3id 2792 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ ((0 +
1)...(𝑁 − 1))𝑘) = Σ𝑘 ∈ (1...(𝑁 − 1))𝑘) |
21 | | arisum 15572 |
. . . . . . 7
⊢ ((𝑁 − 1) ∈
ℕ0 → Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2)) |
22 | 2, 21 | syl 17 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2)) |
23 | | nncn 11981 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
24 | 23 | 2timesd 12216 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (2
· 𝑁) = (𝑁 + 𝑁)) |
25 | 24 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − (2 ·
𝑁)) = ((𝑁↑2) − (𝑁 + 𝑁))) |
26 | 23 | sqcld 13862 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ → (𝑁↑2) ∈
ℂ) |
27 | 26, 23, 23 | subsub4d 11363 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − 𝑁) = ((𝑁↑2) − (𝑁 + 𝑁))) |
28 | 25, 27 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − (2 ·
𝑁)) = (((𝑁↑2) − 𝑁) − 𝑁)) |
29 | 28 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − (2 ·
𝑁)) + 1) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1)) |
30 | | binom2sub1 13936 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℂ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 ·
𝑁)) + 1)) |
31 | 23, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − (2 ·
𝑁)) + 1)) |
32 | 26, 23 | subcld 11332 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → ((𝑁↑2) − 𝑁) ∈
ℂ) |
33 | | 1cnd 10970 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ ℕ → 1 ∈
ℂ) |
34 | 32, 23, 33 | subsubd 11360 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ → (((𝑁↑2) − 𝑁) − (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − 𝑁) + 1)) |
35 | 29, 31, 34 | 3eqtr4d 2788 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)↑2) = (((𝑁↑2) − 𝑁) − (𝑁 − 1))) |
36 | 35 | oveq1d 7290 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1))) |
37 | | ax-1cn 10929 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
38 | | subcl 11220 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 −
1) ∈ ℂ) |
39 | 23, 37, 38 | sylancl 586 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈
ℂ) |
40 | 32, 39 | npcand 11336 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ → ((((𝑁↑2) − 𝑁) − (𝑁 − 1)) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁)) |
41 | 36, 40 | eqtrd 2778 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)↑2) + (𝑁 − 1)) = ((𝑁↑2) − 𝑁)) |
42 | 41 | oveq1d 7290 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((((𝑁 − 1)↑2) + (𝑁 − 1)) / 2) = (((𝑁↑2) − 𝑁) / 2)) |
43 | 22, 42 | eqtrd 2778 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (1...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
44 | 20, 43 | eqtrd 2778 |
. . . 4
⊢ (𝑁 ∈ ℕ → (0 +
Σ𝑘 ∈ ((0 +
1)...(𝑁 − 1))𝑘) = (((𝑁↑2) − 𝑁) / 2)) |
45 | 9, 44 | eqtrd 2778 |
. . 3
⊢ (𝑁 ∈ ℕ →
Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
46 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁 − 1) = (0 −
1)) |
47 | 46 | oveq2d 7291 |
. . . . . . 7
⊢ (𝑁 = 0 → (0...(𝑁 − 1)) = (0...(0 −
1))) |
48 | | 0re 10977 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
49 | | ltm1 11817 |
. . . . . . . . 9
⊢ (0 ∈
ℝ → (0 − 1) < 0) |
50 | 48, 49 | ax-mp 5 |
. . . . . . . 8
⊢ (0
− 1) < 0 |
51 | | 0z 12330 |
. . . . . . . . 9
⊢ 0 ∈
ℤ |
52 | | peano2zm 12363 |
. . . . . . . . . 10
⊢ (0 ∈
ℤ → (0 − 1) ∈ ℤ) |
53 | 51, 52 | ax-mp 5 |
. . . . . . . . 9
⊢ (0
− 1) ∈ ℤ |
54 | | fzn 13272 |
. . . . . . . . 9
⊢ ((0
∈ ℤ ∧ (0 − 1) ∈ ℤ) → ((0 − 1) < 0
↔ (0...(0 − 1)) = ∅)) |
55 | 51, 53, 54 | mp2an 689 |
. . . . . . . 8
⊢ ((0
− 1) < 0 ↔ (0...(0 − 1)) = ∅) |
56 | 50, 55 | mpbi 229 |
. . . . . . 7
⊢ (0...(0
− 1)) = ∅ |
57 | 47, 56 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑁 = 0 → (0...(𝑁 − 1)) =
∅) |
58 | 57 | sumeq1d 15413 |
. . . . 5
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = Σ𝑘 ∈ ∅ 𝑘) |
59 | | sum0 15433 |
. . . . 5
⊢
Σ𝑘 ∈
∅ 𝑘 =
0 |
60 | 58, 59 | eqtrdi 2794 |
. . . 4
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = 0) |
61 | | sq0i 13910 |
. . . . . . . 8
⊢ (𝑁 = 0 → (𝑁↑2) = 0) |
62 | | id 22 |
. . . . . . . 8
⊢ (𝑁 = 0 → 𝑁 = 0) |
63 | 61, 62 | oveq12d 7293 |
. . . . . . 7
⊢ (𝑁 = 0 → ((𝑁↑2) − 𝑁) = (0 − 0)) |
64 | | 0m0e0 12093 |
. . . . . . 7
⊢ (0
− 0) = 0 |
65 | 63, 64 | eqtrdi 2794 |
. . . . . 6
⊢ (𝑁 = 0 → ((𝑁↑2) − 𝑁) = 0) |
66 | 65 | oveq1d 7290 |
. . . . 5
⊢ (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = (0 / 2)) |
67 | | 2cn 12048 |
. . . . . 6
⊢ 2 ∈
ℂ |
68 | | 2ne0 12077 |
. . . . . 6
⊢ 2 ≠
0 |
69 | 67, 68 | div0i 11709 |
. . . . 5
⊢ (0 / 2) =
0 |
70 | 66, 69 | eqtrdi 2794 |
. . . 4
⊢ (𝑁 = 0 → (((𝑁↑2) − 𝑁) / 2) = 0) |
71 | 60, 70 | eqtr4d 2781 |
. . 3
⊢ (𝑁 = 0 → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
72 | 45, 71 | jaoi 854 |
. 2
⊢ ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → Σ𝑘 ∈ (0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |
73 | 1, 72 | sylbi 216 |
1
⊢ (𝑁 ∈ ℕ0
→ Σ𝑘 ∈
(0...(𝑁 − 1))𝑘 = (((𝑁↑2) − 𝑁) / 2)) |