| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bpoly1 | Structured version Visualization version GIF version | ||
| Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| bpoly1 | ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12418 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 2 | bpolyval 15974 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) |
| 4 | exp1 13992 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋) | |
| 5 | 1m1e0 12218 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 6 | 5 | oveq2i 7364 | . . . . 5 ⊢ (0...(1 − 1)) = (0...0) |
| 7 | 6 | sumeq1i 15622 | . . . 4 ⊢ Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) |
| 8 | 0z 12500 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 9 | bpoly0 15975 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | |
| 10 | 9 | oveq1d 7368 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2)) |
| 11 | 10 | oveq2d 7369 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2))) |
| 12 | halfcn 12356 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℂ | |
| 13 | 12 | mullidi 11139 | . . . . . . . 8 ⊢ (1 · (1 / 2)) = (1 / 2) |
| 14 | 11, 13 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2)) |
| 15 | 14, 12 | eqeltrdi 2836 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) |
| 16 | oveq2 7361 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (1C𝑘) = (1C0)) | |
| 17 | bcn0 14235 | . . . . . . . . . 10 ⊢ (1 ∈ ℕ0 → (1C0) = 1) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ (1C0) = 1 |
| 19 | 16, 18 | eqtrdi 2780 | . . . . . . . 8 ⊢ (𝑘 = 0 → (1C𝑘) = 1) |
| 20 | oveq1 7360 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | |
| 21 | oveq2 7361 | . . . . . . . . . . . 12 ⊢ (𝑘 = 0 → (1 − 𝑘) = (1 − 0)) | |
| 22 | 1m0e1 12262 | . . . . . . . . . . . 12 ⊢ (1 − 0) = 1 | |
| 23 | 21, 22 | eqtrdi 2780 | . . . . . . . . . . 11 ⊢ (𝑘 = 0 → (1 − 𝑘) = 1) |
| 24 | 23 | oveq1d 7368 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1)) |
| 25 | df-2 12209 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
| 26 | 24, 25 | eqtr4di 2782 | . . . . . . . . 9 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = 2) |
| 27 | 20, 26 | oveq12d 7371 | . . . . . . . 8 ⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2)) |
| 28 | 19, 27 | oveq12d 7371 | . . . . . . 7 ⊢ (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 29 | 28 | fsum1 15672 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 30 | 8, 15, 29 | sylancr 587 | . . . . 5 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 31 | 30, 14 | eqtrd 2764 | . . . 4 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 32 | 7, 31 | eqtrid 2776 | . . 3 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 33 | 4, 32 | oveq12d 7371 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2))) |
| 34 | 3, 33 | eqtrd 2764 | 1 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 − cmin 11365 / cdiv 11795 2c2 12201 ℕ0cn0 12402 ℤcz 12489 ...cfz 13428 ↑cexp 13986 Ccbc 14227 Σcsu 15611 BernPoly cbp 15971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 df-bpoly 15972 |
| This theorem is referenced by: bpoly2 15982 bpoly3 15983 bpoly4 15984 |
| Copyright terms: Public domain | W3C validator |