![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bpoly1 | Structured version Visualization version GIF version |
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
Ref | Expression |
---|---|
bpoly1 | ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12540 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | bpolyval 16082 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) | |
3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) |
4 | exp1 14105 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋) | |
5 | 1m1e0 12336 | . . . . . 6 ⊢ (1 − 1) = 0 | |
6 | 5 | oveq2i 7442 | . . . . 5 ⊢ (0...(1 − 1)) = (0...0) |
7 | 6 | sumeq1i 15730 | . . . 4 ⊢ Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) |
8 | 0z 12622 | . . . . . 6 ⊢ 0 ∈ ℤ | |
9 | bpoly0 16083 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | |
10 | 9 | oveq1d 7446 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2)) |
11 | 10 | oveq2d 7447 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2))) |
12 | halfcn 12479 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℂ | |
13 | 12 | mullidi 11264 | . . . . . . . 8 ⊢ (1 · (1 / 2)) = (1 / 2) |
14 | 11, 13 | eqtrdi 2791 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2)) |
15 | 14, 12 | eqeltrdi 2847 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) |
16 | oveq2 7439 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (1C𝑘) = (1C0)) | |
17 | bcn0 14346 | . . . . . . . . . 10 ⊢ (1 ∈ ℕ0 → (1C0) = 1) | |
18 | 1, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ (1C0) = 1 |
19 | 16, 18 | eqtrdi 2791 | . . . . . . . 8 ⊢ (𝑘 = 0 → (1C𝑘) = 1) |
20 | oveq1 7438 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | |
21 | oveq2 7439 | . . . . . . . . . . . 12 ⊢ (𝑘 = 0 → (1 − 𝑘) = (1 − 0)) | |
22 | 1m0e1 12385 | . . . . . . . . . . . 12 ⊢ (1 − 0) = 1 | |
23 | 21, 22 | eqtrdi 2791 | . . . . . . . . . . 11 ⊢ (𝑘 = 0 → (1 − 𝑘) = 1) |
24 | 23 | oveq1d 7446 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1)) |
25 | df-2 12327 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
26 | 24, 25 | eqtr4di 2793 | . . . . . . . . 9 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = 2) |
27 | 20, 26 | oveq12d 7449 | . . . . . . . 8 ⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2)) |
28 | 19, 27 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
29 | 28 | fsum1 15780 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
30 | 8, 15, 29 | sylancr 587 | . . . . 5 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
31 | 30, 14 | eqtrd 2775 | . . . 4 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
32 | 7, 31 | eqtrid 2787 | . . 3 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
33 | 4, 32 | oveq12d 7449 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2))) |
34 | 3, 33 | eqtrd 2775 | 1 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 1c1 11154 + caddc 11156 · cmul 11158 − cmin 11490 / cdiv 11918 2c2 12319 ℕ0cn0 12524 ℤcz 12611 ...cfz 13544 ↑cexp 14099 Ccbc 14338 Σcsu 15719 BernPoly cbp 16079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-oi 9548 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12612 df-uz 12877 df-rp 13033 df-fz 13545 df-fzo 13692 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-clim 15521 df-sum 15720 df-bpoly 16080 |
This theorem is referenced by: bpoly2 16090 bpoly3 16091 bpoly4 16092 |
Copyright terms: Public domain | W3C validator |