MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly1 Structured version   Visualization version   GIF version

Theorem bpoly1 15401
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpoly1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))

Proof of Theorem bpoly1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11905 . . 3 1 ∈ ℕ0
2 bpolyval 15399 . . 3 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
31, 2mpan 689 . 2 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
4 exp1 13435 . . 3 (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋)
5 1m1e0 11701 . . . . . 6 (1 − 1) = 0
65oveq2i 7150 . . . . 5 (0...(1 − 1)) = (0...0)
76sumeq1i 15051 . . . 4 Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))
8 0z 11984 . . . . . 6 0 ∈ ℤ
9 bpoly0 15400 . . . . . . . . . 10 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
109oveq1d 7154 . . . . . . . . 9 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2))
1110oveq2d 7155 . . . . . . . 8 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2)))
12 halfcn 11844 . . . . . . . . 9 (1 / 2) ∈ ℂ
1312mulid2i 10639 . . . . . . . 8 (1 · (1 / 2)) = (1 / 2)
1411, 13eqtrdi 2852 . . . . . . 7 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2))
1514, 12eqeltrdi 2901 . . . . . 6 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ)
16 oveq2 7147 . . . . . . . . 9 (𝑘 = 0 → (1C𝑘) = (1C0))
17 bcn0 13670 . . . . . . . . . 10 (1 ∈ ℕ0 → (1C0) = 1)
181, 17ax-mp 5 . . . . . . . . 9 (1C0) = 1
1916, 18eqtrdi 2852 . . . . . . . 8 (𝑘 = 0 → (1C𝑘) = 1)
20 oveq1 7146 . . . . . . . . 9 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
21 oveq2 7147 . . . . . . . . . . . 12 (𝑘 = 0 → (1 − 𝑘) = (1 − 0))
22 1m0e1 11750 . . . . . . . . . . . 12 (1 − 0) = 1
2321, 22eqtrdi 2852 . . . . . . . . . . 11 (𝑘 = 0 → (1 − 𝑘) = 1)
2423oveq1d 7154 . . . . . . . . . 10 (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1))
25 df-2 11692 . . . . . . . . . 10 2 = (1 + 1)
2624, 25eqtr4di 2854 . . . . . . . . 9 (𝑘 = 0 → ((1 − 𝑘) + 1) = 2)
2720, 26oveq12d 7157 . . . . . . . 8 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2))
2819, 27oveq12d 7157 . . . . . . 7 (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
2928fsum1 15098 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
308, 15, 29sylancr 590 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
3130, 14eqtrd 2836 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
327, 31syl5eq 2848 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
334, 32oveq12d 7157 . 2 (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2)))
343, 33eqtrd 2836 1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  (class class class)co 7139  cc 10528  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  cmin 10863   / cdiv 11290  2c2 11684  0cn0 11889  cz 11973  ...cfz 12889  cexp 13429  Ccbc 13662  Σcsu 15038   BernPoly cbp 15396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-fac 13634  df-bc 13663  df-hash 13691  df-cj 14454  df-re 14455  df-im 14456  df-sqrt 14590  df-abs 14591  df-clim 14841  df-sum 15039  df-bpoly 15397
This theorem is referenced by:  bpoly2  15407  bpoly3  15408  bpoly4  15409
  Copyright terms: Public domain W3C validator