MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly1 Structured version   Visualization version   GIF version

Theorem bpoly1 15837
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpoly1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))

Proof of Theorem bpoly1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 12328 . . 3 1 ∈ ℕ0
2 bpolyval 15835 . . 3 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
31, 2mpan 687 . 2 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
4 exp1 13867 . . 3 (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋)
5 1m1e0 12124 . . . . . 6 (1 − 1) = 0
65oveq2i 7327 . . . . 5 (0...(1 − 1)) = (0...0)
76sumeq1i 15486 . . . 4 Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))
8 0z 12409 . . . . . 6 0 ∈ ℤ
9 bpoly0 15836 . . . . . . . . . 10 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
109oveq1d 7331 . . . . . . . . 9 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2))
1110oveq2d 7332 . . . . . . . 8 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2)))
12 halfcn 12267 . . . . . . . . 9 (1 / 2) ∈ ℂ
1312mulid2i 11059 . . . . . . . 8 (1 · (1 / 2)) = (1 / 2)
1411, 13eqtrdi 2792 . . . . . . 7 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2))
1514, 12eqeltrdi 2845 . . . . . 6 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ)
16 oveq2 7324 . . . . . . . . 9 (𝑘 = 0 → (1C𝑘) = (1C0))
17 bcn0 14103 . . . . . . . . . 10 (1 ∈ ℕ0 → (1C0) = 1)
181, 17ax-mp 5 . . . . . . . . 9 (1C0) = 1
1916, 18eqtrdi 2792 . . . . . . . 8 (𝑘 = 0 → (1C𝑘) = 1)
20 oveq1 7323 . . . . . . . . 9 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
21 oveq2 7324 . . . . . . . . . . . 12 (𝑘 = 0 → (1 − 𝑘) = (1 − 0))
22 1m0e1 12173 . . . . . . . . . . . 12 (1 − 0) = 1
2321, 22eqtrdi 2792 . . . . . . . . . . 11 (𝑘 = 0 → (1 − 𝑘) = 1)
2423oveq1d 7331 . . . . . . . . . 10 (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1))
25 df-2 12115 . . . . . . . . . 10 2 = (1 + 1)
2624, 25eqtr4di 2794 . . . . . . . . 9 (𝑘 = 0 → ((1 − 𝑘) + 1) = 2)
2720, 26oveq12d 7334 . . . . . . . 8 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2))
2819, 27oveq12d 7334 . . . . . . 7 (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
2928fsum1 15535 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
308, 15, 29sylancr 587 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
3130, 14eqtrd 2776 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
327, 31eqtrid 2788 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
334, 32oveq12d 7334 . 2 (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2)))
343, 33eqtrd 2776 1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  (class class class)co 7316  cc 10948  0cc0 10950  1c1 10951   + caddc 10953   · cmul 10955  cmin 11284   / cdiv 11711  2c2 12107  0cn0 12312  cz 12398  ...cfz 13318  cexp 13861  Ccbc 14095  Σcsu 15473   BernPoly cbp 15832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027  ax-pre-sup 11028
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-se 5563  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-isom 6474  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-sup 9277  df-oi 9345  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-div 11712  df-nn 12053  df-2 12115  df-3 12116  df-n0 12313  df-z 12399  df-uz 12662  df-rp 12810  df-fz 13319  df-fzo 13462  df-seq 13801  df-exp 13862  df-fac 14067  df-bc 14096  df-hash 14124  df-cj 14886  df-re 14887  df-im 14888  df-sqrt 15022  df-abs 15023  df-clim 15273  df-sum 15474  df-bpoly 15833
This theorem is referenced by:  bpoly2  15843  bpoly3  15844  bpoly4  15845
  Copyright terms: Public domain W3C validator