| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bpoly1 | Structured version Visualization version GIF version | ||
| Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| bpoly1 | ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12394 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 2 | bpolyval 15953 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) |
| 4 | exp1 13971 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋) | |
| 5 | 1m1e0 12194 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 6 | 5 | oveq2i 7357 | . . . . 5 ⊢ (0...(1 − 1)) = (0...0) |
| 7 | 6 | sumeq1i 15601 | . . . 4 ⊢ Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) |
| 8 | 0z 12476 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 9 | bpoly0 15954 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | |
| 10 | 9 | oveq1d 7361 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2)) |
| 11 | 10 | oveq2d 7362 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2))) |
| 12 | halfcn 12332 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℂ | |
| 13 | 12 | mullidi 11114 | . . . . . . . 8 ⊢ (1 · (1 / 2)) = (1 / 2) |
| 14 | 11, 13 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2)) |
| 15 | 14, 12 | eqeltrdi 2839 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) |
| 16 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (1C𝑘) = (1C0)) | |
| 17 | bcn0 14214 | . . . . . . . . . 10 ⊢ (1 ∈ ℕ0 → (1C0) = 1) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ (1C0) = 1 |
| 19 | 16, 18 | eqtrdi 2782 | . . . . . . . 8 ⊢ (𝑘 = 0 → (1C𝑘) = 1) |
| 20 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | |
| 21 | oveq2 7354 | . . . . . . . . . . . 12 ⊢ (𝑘 = 0 → (1 − 𝑘) = (1 − 0)) | |
| 22 | 1m0e1 12238 | . . . . . . . . . . . 12 ⊢ (1 − 0) = 1 | |
| 23 | 21, 22 | eqtrdi 2782 | . . . . . . . . . . 11 ⊢ (𝑘 = 0 → (1 − 𝑘) = 1) |
| 24 | 23 | oveq1d 7361 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1)) |
| 25 | df-2 12185 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
| 26 | 24, 25 | eqtr4di 2784 | . . . . . . . . 9 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = 2) |
| 27 | 20, 26 | oveq12d 7364 | . . . . . . . 8 ⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2)) |
| 28 | 19, 27 | oveq12d 7364 | . . . . . . 7 ⊢ (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 29 | 28 | fsum1 15651 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 30 | 8, 15, 29 | sylancr 587 | . . . . 5 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 31 | 30, 14 | eqtrd 2766 | . . . 4 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 32 | 7, 31 | eqtrid 2778 | . . 3 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 33 | 4, 32 | oveq12d 7364 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2))) |
| 34 | 3, 33 | eqtrd 2766 | 1 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 0cc0 11003 1c1 11004 + caddc 11006 · cmul 11008 − cmin 11341 / cdiv 11771 2c2 12177 ℕ0cn0 12378 ℤcz 12465 ...cfz 13404 ↑cexp 13965 Ccbc 14206 Σcsu 15590 BernPoly cbp 15950 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-oi 9396 df-card 9829 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-rp 12888 df-fz 13405 df-fzo 13552 df-seq 13906 df-exp 13966 df-fac 14178 df-bc 14207 df-hash 14235 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-clim 15392 df-sum 15591 df-bpoly 15951 |
| This theorem is referenced by: bpoly2 15961 bpoly3 15962 bpoly4 15963 |
| Copyright terms: Public domain | W3C validator |