| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > bpoly1 | Structured version Visualization version GIF version | ||
| Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
| Ref | Expression |
|---|---|
| bpoly1 | ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 12465 | . . 3 ⊢ 1 ∈ ℕ0 | |
| 2 | bpolyval 16022 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) |
| 4 | exp1 14039 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋) | |
| 5 | 1m1e0 12265 | . . . . . 6 ⊢ (1 − 1) = 0 | |
| 6 | 5 | oveq2i 7401 | . . . . 5 ⊢ (0...(1 − 1)) = (0...0) |
| 7 | 6 | sumeq1i 15670 | . . . 4 ⊢ Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) |
| 8 | 0z 12547 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 9 | bpoly0 16023 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | |
| 10 | 9 | oveq1d 7405 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2)) |
| 11 | 10 | oveq2d 7406 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2))) |
| 12 | halfcn 12403 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℂ | |
| 13 | 12 | mullidi 11186 | . . . . . . . 8 ⊢ (1 · (1 / 2)) = (1 / 2) |
| 14 | 11, 13 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2)) |
| 15 | 14, 12 | eqeltrdi 2837 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) |
| 16 | oveq2 7398 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (1C𝑘) = (1C0)) | |
| 17 | bcn0 14282 | . . . . . . . . . 10 ⊢ (1 ∈ ℕ0 → (1C0) = 1) | |
| 18 | 1, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ (1C0) = 1 |
| 19 | 16, 18 | eqtrdi 2781 | . . . . . . . 8 ⊢ (𝑘 = 0 → (1C𝑘) = 1) |
| 20 | oveq1 7397 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | |
| 21 | oveq2 7398 | . . . . . . . . . . . 12 ⊢ (𝑘 = 0 → (1 − 𝑘) = (1 − 0)) | |
| 22 | 1m0e1 12309 | . . . . . . . . . . . 12 ⊢ (1 − 0) = 1 | |
| 23 | 21, 22 | eqtrdi 2781 | . . . . . . . . . . 11 ⊢ (𝑘 = 0 → (1 − 𝑘) = 1) |
| 24 | 23 | oveq1d 7405 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1)) |
| 25 | df-2 12256 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
| 26 | 24, 25 | eqtr4di 2783 | . . . . . . . . 9 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = 2) |
| 27 | 20, 26 | oveq12d 7408 | . . . . . . . 8 ⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2)) |
| 28 | 19, 27 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 29 | 28 | fsum1 15720 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 30 | 8, 15, 29 | sylancr 587 | . . . . 5 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
| 31 | 30, 14 | eqtrd 2765 | . . . 4 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 32 | 7, 31 | eqtrid 2777 | . . 3 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
| 33 | 4, 32 | oveq12d 7408 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2))) |
| 34 | 3, 33 | eqtrd 2765 | 1 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 / cdiv 11842 2c2 12248 ℕ0cn0 12449 ℤcz 12536 ...cfz 13475 ↑cexp 14033 Ccbc 14274 Σcsu 15659 BernPoly cbp 16019 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-bpoly 16020 |
| This theorem is referenced by: bpoly2 16030 bpoly3 16031 bpoly4 16032 |
| Copyright terms: Public domain | W3C validator |