Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bpoly1 | Structured version Visualization version GIF version |
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.) |
Ref | Expression |
---|---|
bpoly1 | ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 12328 | . . 3 ⊢ 1 ∈ ℕ0 | |
2 | bpolyval 15835 | . . 3 ⊢ ((1 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))))) |
4 | exp1 13867 | . . 3 ⊢ (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋) | |
5 | 1m1e0 12124 | . . . . . 6 ⊢ (1 − 1) = 0 | |
6 | 5 | oveq2i 7327 | . . . . 5 ⊢ (0...(1 − 1)) = (0...0) |
7 | 6 | sumeq1i 15486 | . . . 4 ⊢ Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) |
8 | 0z 12409 | . . . . . 6 ⊢ 0 ∈ ℤ | |
9 | bpoly0 15836 | . . . . . . . . . 10 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) | |
10 | 9 | oveq1d 7331 | . . . . . . . . 9 ⊢ (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2)) |
11 | 10 | oveq2d 7332 | . . . . . . . 8 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2))) |
12 | halfcn 12267 | . . . . . . . . 9 ⊢ (1 / 2) ∈ ℂ | |
13 | 12 | mulid2i 11059 | . . . . . . . 8 ⊢ (1 · (1 / 2)) = (1 / 2) |
14 | 11, 13 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2)) |
15 | 14, 12 | eqeltrdi 2845 | . . . . . 6 ⊢ (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) |
16 | oveq2 7324 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (1C𝑘) = (1C0)) | |
17 | bcn0 14103 | . . . . . . . . . 10 ⊢ (1 ∈ ℕ0 → (1C0) = 1) | |
18 | 1, 17 | ax-mp 5 | . . . . . . . . 9 ⊢ (1C0) = 1 |
19 | 16, 18 | eqtrdi 2792 | . . . . . . . 8 ⊢ (𝑘 = 0 → (1C𝑘) = 1) |
20 | oveq1 7323 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋)) | |
21 | oveq2 7324 | . . . . . . . . . . . 12 ⊢ (𝑘 = 0 → (1 − 𝑘) = (1 − 0)) | |
22 | 1m0e1 12173 | . . . . . . . . . . . 12 ⊢ (1 − 0) = 1 | |
23 | 21, 22 | eqtrdi 2792 | . . . . . . . . . . 11 ⊢ (𝑘 = 0 → (1 − 𝑘) = 1) |
24 | 23 | oveq1d 7331 | . . . . . . . . . 10 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1)) |
25 | df-2 12115 | . . . . . . . . . 10 ⊢ 2 = (1 + 1) | |
26 | 24, 25 | eqtr4di 2794 | . . . . . . . . 9 ⊢ (𝑘 = 0 → ((1 − 𝑘) + 1) = 2) |
27 | 20, 26 | oveq12d 7334 | . . . . . . . 8 ⊢ (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2)) |
28 | 19, 27 | oveq12d 7334 | . . . . . . 7 ⊢ (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
29 | 28 | fsum1 15535 | . . . . . 6 ⊢ ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
30 | 8, 15, 29 | sylancr 587 | . . . . 5 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2))) |
31 | 30, 14 | eqtrd 2776 | . . . 4 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
32 | 7, 31 | eqtrid 2788 | . . 3 ⊢ (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2)) |
33 | 4, 32 | oveq12d 7334 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2))) |
34 | 3, 33 | eqtrd 2776 | 1 ⊢ (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 (class class class)co 7316 ℂcc 10948 0cc0 10950 1c1 10951 + caddc 10953 · cmul 10955 − cmin 11284 / cdiv 11711 2c2 12107 ℕ0cn0 12312 ℤcz 12398 ...cfz 13318 ↑cexp 13861 Ccbc 14095 Σcsu 15473 BernPoly cbp 15832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-oi 9345 df-card 9774 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-2 12115 df-3 12116 df-n0 12313 df-z 12399 df-uz 12662 df-rp 12810 df-fz 13319 df-fzo 13462 df-seq 13801 df-exp 13862 df-fac 14067 df-bc 14096 df-hash 14124 df-cj 14886 df-re 14887 df-im 14888 df-sqrt 15022 df-abs 15023 df-clim 15273 df-sum 15474 df-bpoly 15833 |
This theorem is referenced by: bpoly2 15843 bpoly3 15844 bpoly4 15845 |
Copyright terms: Public domain | W3C validator |