Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvf1 | Structured version Visualization version GIF version |
Description: In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
Ref | Expression |
---|---|
signsvf1 | ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s1cl 14235 | . . 3 ⊢ (𝐾 ∈ ℝ → 〈“𝐾”〉 ∈ Word ℝ) | |
2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
6 | 2, 3, 4, 5 | signsvvfval 32457 | . . 3 ⊢ (〈“𝐾”〉 ∈ Word ℝ → (𝑉‘〈“𝐾”〉) = Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0)) |
7 | 1, 6 | syl 17 | . 2 ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0)) |
8 | s1len 14239 | . . . . . 6 ⊢ (♯‘〈“𝐾”〉) = 1 | |
9 | 8 | oveq2i 7266 | . . . . 5 ⊢ (1..^(♯‘〈“𝐾”〉)) = (1..^1) |
10 | fzo0 13339 | . . . . 5 ⊢ (1..^1) = ∅ | |
11 | 9, 10 | eqtri 2766 | . . . 4 ⊢ (1..^(♯‘〈“𝐾”〉)) = ∅ |
12 | 11 | sumeq1i 15338 | . . 3 ⊢ Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) |
13 | sum0 15361 | . . 3 ⊢ Σ𝑗 ∈ ∅ if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = 0 | |
14 | 12, 13 | eqtri 2766 | . 2 ⊢ Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = 0 |
15 | 7, 14 | eqtrdi 2795 | 1 ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∅c0 4253 ifcif 4456 {cpr 4560 {ctp 4562 〈cop 4564 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 ℝcr 10801 0cc0 10802 1c1 10803 − cmin 11135 -cneg 11136 ...cfz 13168 ..^cfzo 13311 ♯chash 13972 Word cword 14145 〈“cs1 14228 sgncsgn 14725 Σcsu 15325 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Σg cgsu 17068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-s1 14229 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-sum 15326 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |