Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvf1 Structured version   Visualization version   GIF version

Theorem signsvf1 31959
Description: In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvf1 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = 0)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐾   𝑓,𝑊,𝑖,𝑛   𝑓,𝑗   𝑇,𝑓   𝑗,𝐾
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvf1
StepHypRef Expression
1 s1cl 13951 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvvfval 31956 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑉‘⟨“𝐾”⟩) = Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0))
71, 6syl 17 . 2 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0))
8 s1len 13955 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
98oveq2i 7150 . . . . 5 (1..^(♯‘⟨“𝐾”⟩)) = (1..^1)
10 fzo0 13060 . . . . 5 (1..^1) = ∅
119, 10eqtri 2824 . . . 4 (1..^(♯‘⟨“𝐾”⟩)) = ∅
1211sumeq1i 15050 . . 3 Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0)
13 sum0 15073 . . 3 Σ𝑗 ∈ ∅ if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = 0
1412, 13eqtri 2824 . 2 Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = 0
157, 14eqtrdi 2852 1 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2112  wne 2990  c0 4246  ifcif 4428  {cpr 4530  {ctp 4532  cop 4534  cmpt 5113  cfv 6328  (class class class)co 7139  cmpo 7141  cr 10529  0cc0 10530  1c1 10531  cmin 10863  -cneg 10864  ...cfz 12889  ..^cfzo 13032  chash 13690  Word cword 13861  ⟨“cs1 13944  sgncsgn 14440  Σcsu 15037  ndxcnx 16475  Basecbs 16478  +gcplusg 16560   Σg cgsu 16709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-exp 13430  df-hash 13691  df-word 13862  df-s1 13945  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-clim 14840  df-sum 15038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator