Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvf1 Structured version   Visualization version   GIF version

Theorem signsvf1 34549
Description: In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvf1 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = 0)
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝐾   𝑓,𝑊,𝑖,𝑛   𝑓,𝑗   𝑇,𝑓   𝑗,𝐾
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝐾(𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvf1
StepHypRef Expression
1 s1cl 14509 . . 3 (𝐾 ∈ ℝ → ⟨“𝐾”⟩ ∈ Word ℝ)
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvvfval 34546 . . 3 (⟨“𝐾”⟩ ∈ Word ℝ → (𝑉‘⟨“𝐾”⟩) = Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0))
71, 6syl 17 . 2 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0))
8 s1len 14513 . . . . . 6 (♯‘⟨“𝐾”⟩) = 1
98oveq2i 7360 . . . . 5 (1..^(♯‘⟨“𝐾”⟩)) = (1..^1)
10 fzo0 13586 . . . . 5 (1..^1) = ∅
119, 10eqtri 2752 . . . 4 (1..^(♯‘⟨“𝐾”⟩)) = ∅
1211sumeq1i 15604 . . 3 Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0)
13 sum0 15628 . . 3 Σ𝑗 ∈ ∅ if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = 0
1412, 13eqtri 2752 . 2 Σ𝑗 ∈ (1..^(♯‘⟨“𝐾”⟩))if(((𝑇‘⟨“𝐾”⟩)‘𝑗) ≠ ((𝑇‘⟨“𝐾”⟩)‘(𝑗 − 1)), 1, 0) = 0
157, 14eqtrdi 2780 1 (𝐾 ∈ ℝ → (𝑉‘⟨“𝐾”⟩) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  c0 4284  ifcif 4476  {cpr 4579  {ctp 4581  cop 4583  cmpt 5173  cfv 6482  (class class class)co 7349  cmpo 7351  cr 11008  0cc0 11009  1c1 11010  cmin 11347  -cneg 11348  ...cfz 13410  ..^cfzo 13557  chash 14237  Word cword 14420  ⟨“cs1 14502  sgncsgn 14993  Σcsu 15593  ndxcnx 17104  Basecbs 17120  +gcplusg 17161   Σg cgsu 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-word 14421  df-s1 14503  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator