| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvf1 | Structured version Visualization version GIF version | ||
| Description: In a single-letter word, which represents a constant polynomial, there is no change of sign. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signsvf1 | ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s1cl 14509 | . . 3 ⊢ (𝐾 ∈ ℝ → 〈“𝐾”〉 ∈ Word ℝ) | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvvfval 34546 | . . 3 ⊢ (〈“𝐾”〉 ∈ Word ℝ → (𝑉‘〈“𝐾”〉) = Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0)) |
| 7 | 1, 6 | syl 17 | . 2 ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0)) |
| 8 | s1len 14513 | . . . . . 6 ⊢ (♯‘〈“𝐾”〉) = 1 | |
| 9 | 8 | oveq2i 7360 | . . . . 5 ⊢ (1..^(♯‘〈“𝐾”〉)) = (1..^1) |
| 10 | fzo0 13586 | . . . . 5 ⊢ (1..^1) = ∅ | |
| 11 | 9, 10 | eqtri 2752 | . . . 4 ⊢ (1..^(♯‘〈“𝐾”〉)) = ∅ |
| 12 | 11 | sumeq1i 15604 | . . 3 ⊢ Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) |
| 13 | sum0 15628 | . . 3 ⊢ Σ𝑗 ∈ ∅ if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = 0 | |
| 14 | 12, 13 | eqtri 2752 | . 2 ⊢ Σ𝑗 ∈ (1..^(♯‘〈“𝐾”〉))if(((𝑇‘〈“𝐾”〉)‘𝑗) ≠ ((𝑇‘〈“𝐾”〉)‘(𝑗 − 1)), 1, 0) = 0 |
| 15 | 7, 14 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ ℝ → (𝑉‘〈“𝐾”〉) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4284 ifcif 4476 {cpr 4579 {ctp 4581 〈cop 4583 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ℝcr 11008 0cc0 11009 1c1 11010 − cmin 11347 -cneg 11348 ...cfz 13410 ..^cfzo 13557 ♯chash 14237 Word cword 14420 〈“cs1 14502 sgncsgn 14993 Σcsu 15593 ndxcnx 17104 Basecbs 17120 +gcplusg 17161 Σg cgsu 17344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-s1 14503 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |