![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvf0 | Structured version Visualization version GIF version |
Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
Ref | Expression |
---|---|
signsv.p | ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) |
signsv.w | β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} |
signsv.t | β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) |
signsv.v | β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) |
Ref | Expression |
---|---|
signsvf0 | β’ (πββ ) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wrd0 14494 | . . 3 β’ β β Word β | |
2 | signsv.p | . . . 4 ⒠⨣ = (π β {-1, 0, 1}, π β {-1, 0, 1} β¦ if(π = 0, π, π)) | |
3 | signsv.w | . . . 4 β’ π = {β¨(Baseβndx), {-1, 0, 1}β©, β¨(+gβndx), ⨣ β©} | |
4 | signsv.t | . . . 4 β’ π = (π β Word β β¦ (π β (0..^(β―βπ)) β¦ (π Ξ£g (π β (0...π) β¦ (sgnβ(πβπ)))))) | |
5 | signsv.v | . . . 4 β’ π = (π β Word β β¦ Ξ£π β (1..^(β―βπ))if(((πβπ)βπ) β ((πβπ)β(π β 1)), 1, 0)) | |
6 | 2, 3, 4, 5 | signsvvfval 33888 | . . 3 β’ (β β Word β β (πββ ) = Ξ£π β (1..^(β―ββ ))if(((πββ )βπ) β ((πββ )β(π β 1)), 1, 0)) |
7 | 1, 6 | ax-mp 5 | . 2 β’ (πββ ) = Ξ£π β (1..^(β―ββ ))if(((πββ )βπ) β ((πββ )β(π β 1)), 1, 0) |
8 | hash0 14332 | . . . . 5 β’ (β―ββ ) = 0 | |
9 | 8 | oveq2i 7423 | . . . 4 β’ (1..^(β―ββ )) = (1..^0) |
10 | 0le1 11742 | . . . . 5 β’ 0 β€ 1 | |
11 | 1z 12597 | . . . . . 6 β’ 1 β β€ | |
12 | 0z 12574 | . . . . . 6 β’ 0 β β€ | |
13 | fzon 13658 | . . . . . 6 β’ ((1 β β€ β§ 0 β β€) β (0 β€ 1 β (1..^0) = β )) | |
14 | 11, 12, 13 | mp2an 689 | . . . . 5 β’ (0 β€ 1 β (1..^0) = β ) |
15 | 10, 14 | mpbi 229 | . . . 4 β’ (1..^0) = β |
16 | 9, 15 | eqtri 2759 | . . 3 β’ (1..^(β―ββ )) = β |
17 | 16 | sumeq1i 15649 | . 2 β’ Ξ£π β (1..^(β―ββ ))if(((πββ )βπ) β ((πββ )β(π β 1)), 1, 0) = Ξ£π β β if(((πββ )βπ) β ((πββ )β(π β 1)), 1, 0) |
18 | sum0 15672 | . 2 β’ Ξ£π β β if(((πββ )βπ) β ((πββ )β(π β 1)), 1, 0) = 0 | |
19 | 7, 17, 18 | 3eqtri 2763 | 1 β’ (πββ ) = 0 |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1540 β wcel 2105 β wne 2939 β c0 4322 ifcif 4528 {cpr 4630 {ctp 4632 β¨cop 4634 class class class wbr 5148 β¦ cmpt 5231 βcfv 6543 (class class class)co 7412 β cmpo 7414 βcr 11112 0cc0 11113 1c1 11114 β€ cle 11254 β cmin 11449 -cneg 11450 β€cz 12563 ...cfz 13489 ..^cfzo 13632 β―chash 14295 Word cword 14469 sgncsgn 15038 Ξ£csu 15637 ndxcnx 17131 Basecbs 17149 +gcplusg 17202 Ξ£g cgsu 17391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-word 14470 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |