| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvf0 | Structured version Visualization version GIF version | ||
| Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signsvf0 | ⊢ (𝑉‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 14441 | . . 3 ⊢ ∅ ∈ Word ℝ | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvvfval 34583 | . . 3 ⊢ (∅ ∈ Word ℝ → (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) |
| 8 | hash0 14269 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 9 | 8 | oveq2i 7352 | . . . 4 ⊢ (1..^(♯‘∅)) = (1..^0) |
| 10 | 0le1 11635 | . . . . 5 ⊢ 0 ≤ 1 | |
| 11 | 1z 12497 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 12 | 0z 12474 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 13 | fzon 13575 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . . 5 ⊢ (0 ≤ 1 ↔ (1..^0) = ∅) |
| 15 | 10, 14 | mpbi 230 | . . . 4 ⊢ (1..^0) = ∅ |
| 16 | 9, 15 | eqtri 2754 | . . 3 ⊢ (1..^(♯‘∅)) = ∅ |
| 17 | 16 | sumeq1i 15599 | . 2 ⊢ Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) |
| 18 | sum0 15623 | . 2 ⊢ Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = 0 | |
| 19 | 7, 17, 18 | 3eqtri 2758 | 1 ⊢ (𝑉‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 ifcif 4470 {cpr 4573 {ctp 4575 〈cop 4577 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 ∈ cmpo 7343 ℝcr 11000 0cc0 11001 1c1 11002 ≤ cle 11142 − cmin 11339 -cneg 11340 ℤcz 12463 ...cfz 13402 ..^cfzo 13549 ♯chash 14232 Word cword 14415 sgncsgn 14988 Σcsu 15588 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 Σg cgsu 17339 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-word 14416 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-sum 15589 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |