Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  signsvf0 Structured version   Visualization version   GIF version

Theorem signsvf0 31176
Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.)
Hypotheses
Ref Expression
signsv.p = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
signsv.w 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
signsv.t 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
signsv.v 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
Assertion
Ref Expression
signsvf0 (𝑉‘∅) = 0
Distinct variable groups:   𝑎,𝑏,   𝑓,𝑖,𝑛,𝑊   𝑓,𝑗   𝑇,𝑓
Allowed substitution hints:   (𝑓,𝑖,𝑗,𝑛)   𝑇(𝑖,𝑗,𝑛,𝑎,𝑏)   𝑉(𝑓,𝑖,𝑗,𝑛,𝑎,𝑏)   𝑊(𝑗,𝑎,𝑏)

Proof of Theorem signsvf0
StepHypRef Expression
1 wrd0 13558 . . 3 ∅ ∈ Word ℝ
2 signsv.p . . . 4 = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏))
3 signsv.w . . . 4 𝑊 = {⟨(Base‘ndx), {-1, 0, 1}⟩, ⟨(+g‘ndx), ⟩}
4 signsv.t . . . 4 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓𝑖))))))
5 signsv.v . . . 4 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇𝑓)‘𝑗) ≠ ((𝑇𝑓)‘(𝑗 − 1)), 1, 0))
62, 3, 4, 5signsvvfval 31174 . . 3 (∅ ∈ Word ℝ → (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0))
71, 6ax-mp 5 . 2 (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)
8 hash0 13407 . . . . 5 (♯‘∅) = 0
98oveq2i 6890 . . . 4 (1..^(♯‘∅)) = (1..^0)
10 0le1 10844 . . . . 5 0 ≤ 1
11 1z 11696 . . . . . 6 1 ∈ ℤ
12 0z 11676 . . . . . 6 0 ∈ ℤ
13 fzon 12743 . . . . . 6 ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅))
1411, 12, 13mp2an 684 . . . . 5 (0 ≤ 1 ↔ (1..^0) = ∅)
1510, 14mpbi 222 . . . 4 (1..^0) = ∅
169, 15eqtri 2822 . . 3 (1..^(♯‘∅)) = ∅
1716sumeq1i 14768 . 2 Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)
18 sum0 14792 . 2 Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = 0
197, 17, 183eqtri 2826 1 (𝑉‘∅) = 0
Colors of variables: wff setvar class
Syntax hints:  wb 198   = wceq 1653  wcel 2157  wne 2972  c0 4116  ifcif 4278  {cpr 4371  {ctp 4373  cop 4375   class class class wbr 4844  cmpt 4923  cfv 6102  (class class class)co 6879  cmpt2 6881  cr 10224  0cc0 10225  1c1 10226  cle 10365  cmin 10557  -cneg 10558  cz 11665  ...cfz 12579  ..^cfzo 12719  chash 13369  Word cword 13533  sgncsgn 14166  Σcsu 14756  ndxcnx 16180  Basecbs 16183  +gcplusg 16266   Σg cgsu 16415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-oadd 7804  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-oi 8658  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-word 13534  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-sum 14757
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator