| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > signsvf0 | Structured version Visualization version GIF version | ||
| Description: There is no change of sign in the empty word. (Contributed by Thierry Arnoux, 8-Oct-2018.) |
| Ref | Expression |
|---|---|
| signsv.p | ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) |
| signsv.w | ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} |
| signsv.t | ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) |
| signsv.v | ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) |
| Ref | Expression |
|---|---|
| signsvf0 | ⊢ (𝑉‘∅) = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrd0 14562 | . . 3 ⊢ ∅ ∈ Word ℝ | |
| 2 | signsv.p | . . . 4 ⊢ ⨣ = (𝑎 ∈ {-1, 0, 1}, 𝑏 ∈ {-1, 0, 1} ↦ if(𝑏 = 0, 𝑎, 𝑏)) | |
| 3 | signsv.w | . . . 4 ⊢ 𝑊 = {〈(Base‘ndx), {-1, 0, 1}〉, 〈(+g‘ndx), ⨣ 〉} | |
| 4 | signsv.t | . . . 4 ⊢ 𝑇 = (𝑓 ∈ Word ℝ ↦ (𝑛 ∈ (0..^(♯‘𝑓)) ↦ (𝑊 Σg (𝑖 ∈ (0...𝑛) ↦ (sgn‘(𝑓‘𝑖)))))) | |
| 5 | signsv.v | . . . 4 ⊢ 𝑉 = (𝑓 ∈ Word ℝ ↦ Σ𝑗 ∈ (1..^(♯‘𝑓))if(((𝑇‘𝑓)‘𝑗) ≠ ((𝑇‘𝑓)‘(𝑗 − 1)), 1, 0)) | |
| 6 | 2, 3, 4, 5 | signsvvfval 34615 | . . 3 ⊢ (∅ ∈ Word ℝ → (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0)) |
| 7 | 1, 6 | ax-mp 5 | . 2 ⊢ (𝑉‘∅) = Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) |
| 8 | hash0 14390 | . . . . 5 ⊢ (♯‘∅) = 0 | |
| 9 | 8 | oveq2i 7421 | . . . 4 ⊢ (1..^(♯‘∅)) = (1..^0) |
| 10 | 0le1 11765 | . . . . 5 ⊢ 0 ≤ 1 | |
| 11 | 1z 12627 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 12 | 0z 12604 | . . . . . 6 ⊢ 0 ∈ ℤ | |
| 13 | fzon 13702 | . . . . . 6 ⊢ ((1 ∈ ℤ ∧ 0 ∈ ℤ) → (0 ≤ 1 ↔ (1..^0) = ∅)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . . 5 ⊢ (0 ≤ 1 ↔ (1..^0) = ∅) |
| 15 | 10, 14 | mpbi 230 | . . . 4 ⊢ (1..^0) = ∅ |
| 16 | 9, 15 | eqtri 2759 | . . 3 ⊢ (1..^(♯‘∅)) = ∅ |
| 17 | 16 | sumeq1i 15718 | . 2 ⊢ Σ𝑗 ∈ (1..^(♯‘∅))if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) |
| 18 | sum0 15742 | . 2 ⊢ Σ𝑗 ∈ ∅ if(((𝑇‘∅)‘𝑗) ≠ ((𝑇‘∅)‘(𝑗 − 1)), 1, 0) = 0 | |
| 19 | 7, 17, 18 | 3eqtri 2763 | 1 ⊢ (𝑉‘∅) = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∅c0 4313 ifcif 4505 {cpr 4608 {ctp 4610 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 ∈ cmpo 7412 ℝcr 11133 0cc0 11134 1c1 11135 ≤ cle 11275 − cmin 11471 -cneg 11472 ℤcz 12593 ...cfz 13529 ..^cfzo 13676 ♯chash 14353 Word cword 14536 sgncsgn 15110 Σcsu 15707 ndxcnx 17217 Basecbs 17233 +gcplusg 17276 Σg cgsu 17459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-rp 13014 df-fz 13530 df-fzo 13677 df-seq 14025 df-exp 14085 df-hash 14354 df-word 14537 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-clim 15509 df-sum 15708 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |