![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sgmprm | Structured version Visualization version GIF version |
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgmprm | ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11163 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 1nn0 12484 | . . 3 ⊢ 1 ∈ ℕ0 | |
3 | sgmppw 27034 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) | |
4 | 1, 2, 3 | mp3an13 1448 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) |
5 | prmnn 16607 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | nncnd 12224 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
7 | 6 | exp1d 14102 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃) |
8 | 7 | oveq2d 7417 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃)) |
9 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℂ) |
10 | 9 | cxp1d 26544 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑐1) = 𝑃) |
11 | 10 | oveq1d 7416 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃↑𝑐1)↑𝑘) = (𝑃↑𝑘)) |
12 | 11 | sumeq2dv 15645 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃↑𝑘)) |
13 | 1m1e0 12280 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
14 | 13 | oveq2i 7412 | . . . . . . 7 ⊢ (0...(1 − 1)) = (0...0) |
15 | 14 | sumeq1i 15640 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = Σ𝑘 ∈ (0...0)(𝑃↑𝑘) |
16 | 0z 12565 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
17 | 6 | exp0d 14101 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
18 | 17, 1 | eqeltrdi 2833 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ) |
19 | oveq2 7409 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | |
20 | 19 | fsum1 15689 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
21 | 16, 18, 20 | sylancr 586 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
22 | 21, 17 | eqtrd 2764 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = 1) |
23 | 15, 22 | eqtrid 2776 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = 1) |
24 | 23, 7 | oveq12d 7419 | . . . 4 ⊢ (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1)) = (1 + 𝑃)) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℕ0) |
26 | nn0uz 12860 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
27 | 25, 26 | eleqtrdi 2835 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ (ℤ≥‘0)) |
28 | elfznn0 13590 | . . . . . 6 ⊢ (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0) | |
29 | expcl 14041 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℂ) | |
30 | 6, 28, 29 | syl2an 595 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑘) ∈ ℂ) |
31 | oveq2 7409 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃↑𝑘) = (𝑃↑1)) | |
32 | 27, 30, 31 | fsumm1 15693 | . . . 4 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1))) |
33 | addcom 11396 | . . . . 5 ⊢ ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃)) | |
34 | 6, 1, 33 | sylancl 585 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃)) |
35 | 24, 32, 34 | 3eqtr4d 2774 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (𝑃 + 1)) |
36 | 12, 35 | eqtrd 2764 | . 2 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = (𝑃 + 1)) |
37 | 4, 8, 36 | 3eqtr3d 2772 | 1 ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ‘cfv 6533 (class class class)co 7401 ℂcc 11103 0cc0 11105 1c1 11106 + caddc 11108 − cmin 11440 ℕ0cn0 12468 ℤcz 12554 ℤ≥cuz 12818 ...cfz 13480 ↑cexp 14023 Σcsu 15628 ℙcprime 16604 ↑𝑐ccxp 26394 σ csgm 26932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9631 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 ax-addf 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-iin 4990 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-supp 8141 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-2o 8462 df-er 8698 df-map 8817 df-pm 8818 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-fsupp 9357 df-fi 9401 df-sup 9432 df-inf 9433 df-oi 9500 df-card 9929 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-q 12929 df-rp 12971 df-xneg 13088 df-xadd 13089 df-xmul 13090 df-ioo 13324 df-ioc 13325 df-ico 13326 df-icc 13327 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 df-sin 16009 df-cos 16010 df-pi 16012 df-dvds 16194 df-gcd 16432 df-prm 16605 df-pc 16766 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-mulr 17207 df-starv 17208 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-unif 17216 df-hom 17217 df-cco 17218 df-rest 17364 df-topn 17365 df-0g 17383 df-gsum 17384 df-topgen 17385 df-pt 17386 df-prds 17389 df-xrs 17444 df-qtop 17449 df-imas 17450 df-xps 17452 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18560 df-sgrp 18639 df-mnd 18655 df-submnd 18701 df-mulg 18983 df-cntz 19218 df-cmn 19687 df-psmet 21215 df-xmet 21216 df-met 21217 df-bl 21218 df-mopn 21219 df-fbas 21220 df-fg 21221 df-cnfld 21224 df-top 22706 df-topon 22723 df-topsp 22745 df-bases 22759 df-cld 22833 df-ntr 22834 df-cls 22835 df-nei 22912 df-lp 22950 df-perf 22951 df-cn 23041 df-cnp 23042 df-haus 23129 df-tx 23376 df-hmeo 23569 df-fil 23660 df-fm 23752 df-flim 23753 df-flf 23754 df-xms 24136 df-ms 24137 df-tms 24138 df-cncf 24708 df-limc 25705 df-dv 25706 df-log 26395 df-cxp 26396 df-sgm 26938 |
This theorem is referenced by: perfect1 27065 |
Copyright terms: Public domain | W3C validator |