![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sgmprm | Structured version Visualization version GIF version |
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgmprm | ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11218 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 1nn0 12542 | . . 3 ⊢ 1 ∈ ℕ0 | |
3 | sgmppw 27229 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) | |
4 | 1, 2, 3 | mp3an13 1449 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) |
5 | prmnn 16677 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | nncnd 12282 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
7 | 6 | exp1d 14162 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃) |
8 | 7 | oveq2d 7442 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃)) |
9 | 6 | adantr 479 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℂ) |
10 | 9 | cxp1d 26736 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑐1) = 𝑃) |
11 | 10 | oveq1d 7441 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃↑𝑐1)↑𝑘) = (𝑃↑𝑘)) |
12 | 11 | sumeq2dv 15709 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃↑𝑘)) |
13 | 1m1e0 12338 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
14 | 13 | oveq2i 7437 | . . . . . . 7 ⊢ (0...(1 − 1)) = (0...0) |
15 | 14 | sumeq1i 15704 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = Σ𝑘 ∈ (0...0)(𝑃↑𝑘) |
16 | 0z 12623 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
17 | 6 | exp0d 14161 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
18 | 17, 1 | eqeltrdi 2834 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ) |
19 | oveq2 7434 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | |
20 | 19 | fsum1 15753 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
21 | 16, 18, 20 | sylancr 585 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
22 | 21, 17 | eqtrd 2766 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = 1) |
23 | 15, 22 | eqtrid 2778 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = 1) |
24 | 23, 7 | oveq12d 7444 | . . . 4 ⊢ (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1)) = (1 + 𝑃)) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℕ0) |
26 | nn0uz 12918 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
27 | 25, 26 | eleqtrdi 2836 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ (ℤ≥‘0)) |
28 | elfznn0 13650 | . . . . . 6 ⊢ (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0) | |
29 | expcl 14101 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℂ) | |
30 | 6, 28, 29 | syl2an 594 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑘) ∈ ℂ) |
31 | oveq2 7434 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃↑𝑘) = (𝑃↑1)) | |
32 | 27, 30, 31 | fsumm1 15757 | . . . 4 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1))) |
33 | addcom 11452 | . . . . 5 ⊢ ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃)) | |
34 | 6, 1, 33 | sylancl 584 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃)) |
35 | 24, 32, 34 | 3eqtr4d 2776 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (𝑃 + 1)) |
36 | 12, 35 | eqtrd 2766 | . 2 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = (𝑃 + 1)) |
37 | 4, 8, 36 | 3eqtr3d 2774 | 1 ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ‘cfv 6556 (class class class)co 7426 ℂcc 11158 0cc0 11160 1c1 11161 + caddc 11163 − cmin 11496 ℕ0cn0 12526 ℤcz 12612 ℤ≥cuz 12876 ...cfz 13540 ↑cexp 14083 Σcsu 15692 ℙcprime 16674 ↑𝑐ccxp 26585 σ csgm 27127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-inf2 9686 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 ax-addf 11239 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-iin 5006 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-isom 6565 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8005 df-2nd 8006 df-supp 8177 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-2o 8499 df-er 8736 df-map 8859 df-pm 8860 df-ixp 8929 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-fsupp 9408 df-fi 9456 df-sup 9487 df-inf 9488 df-oi 9555 df-card 9984 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12613 df-dec 12732 df-uz 12877 df-q 12987 df-rp 13031 df-xneg 13148 df-xadd 13149 df-xmul 13150 df-ioo 13384 df-ioc 13385 df-ico 13386 df-icc 13387 df-fz 13541 df-fzo 13684 df-fl 13814 df-mod 13892 df-seq 14024 df-exp 14084 df-fac 14293 df-bc 14322 df-hash 14350 df-shft 15074 df-cj 15106 df-re 15107 df-im 15108 df-sqrt 15242 df-abs 15243 df-limsup 15475 df-clim 15492 df-rlim 15493 df-sum 15693 df-ef 16071 df-sin 16073 df-cos 16074 df-pi 16076 df-dvds 16259 df-gcd 16497 df-prm 16675 df-pc 16841 df-struct 17151 df-sets 17168 df-slot 17186 df-ndx 17198 df-base 17216 df-ress 17245 df-plusg 17281 df-mulr 17282 df-starv 17283 df-sca 17284 df-vsca 17285 df-ip 17286 df-tset 17287 df-ple 17288 df-ds 17290 df-unif 17291 df-hom 17292 df-cco 17293 df-rest 17439 df-topn 17440 df-0g 17458 df-gsum 17459 df-topgen 17460 df-pt 17461 df-prds 17464 df-xrs 17519 df-qtop 17524 df-imas 17525 df-xps 17527 df-mre 17601 df-mrc 17602 df-acs 17604 df-mgm 18635 df-sgrp 18714 df-mnd 18730 df-submnd 18776 df-mulg 19064 df-cntz 19313 df-cmn 19782 df-psmet 21337 df-xmet 21338 df-met 21339 df-bl 21340 df-mopn 21341 df-fbas 21342 df-fg 21343 df-cnfld 21346 df-top 22890 df-topon 22907 df-topsp 22929 df-bases 22943 df-cld 23017 df-ntr 23018 df-cls 23019 df-nei 23096 df-lp 23134 df-perf 23135 df-cn 23225 df-cnp 23226 df-haus 23313 df-tx 23560 df-hmeo 23753 df-fil 23844 df-fm 23936 df-flim 23937 df-flf 23938 df-xms 24320 df-ms 24321 df-tms 24322 df-cncf 24892 df-limc 25889 df-dv 25890 df-log 26586 df-cxp 26587 df-sgm 27133 |
This theorem is referenced by: perfect1 27260 |
Copyright terms: Public domain | W3C validator |