![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1sgmprm | Structured version Visualization version GIF version |
Description: The sum of divisors for a prime is 𝑃 + 1 because the only divisors are 1 and 𝑃. (Contributed by Mario Carneiro, 17-May-2016.) |
Ref | Expression |
---|---|
1sgmprm | ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 11210 | . . 3 ⊢ 1 ∈ ℂ | |
2 | 1nn0 12539 | . . 3 ⊢ 1 ∈ ℕ0 | |
3 | sgmppw 27255 | . . 3 ⊢ ((1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0) → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) | |
4 | 1, 2, 3 | mp3an13 1451 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘)) |
5 | prmnn 16707 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
6 | 5 | nncnd 12279 | . . . 4 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
7 | 6 | exp1d 14177 | . . 3 ⊢ (𝑃 ∈ ℙ → (𝑃↑1) = 𝑃) |
8 | 7 | oveq2d 7446 | . 2 ⊢ (𝑃 ∈ ℙ → (1 σ (𝑃↑1)) = (1 σ 𝑃)) |
9 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → 𝑃 ∈ ℂ) |
10 | 9 | cxp1d 26762 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑐1) = 𝑃) |
11 | 10 | oveq1d 7445 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → ((𝑃↑𝑐1)↑𝑘) = (𝑃↑𝑘)) |
12 | 11 | sumeq2dv 15734 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = Σ𝑘 ∈ (0...1)(𝑃↑𝑘)) |
13 | 1m1e0 12335 | . . . . . . . 8 ⊢ (1 − 1) = 0 | |
14 | 13 | oveq2i 7441 | . . . . . . 7 ⊢ (0...(1 − 1)) = (0...0) |
15 | 14 | sumeq1i 15729 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = Σ𝑘 ∈ (0...0)(𝑃↑𝑘) |
16 | 0z 12621 | . . . . . . . 8 ⊢ 0 ∈ ℤ | |
17 | 6 | exp0d 14176 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
18 | 17, 1 | eqeltrdi 2846 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) ∈ ℂ) |
19 | oveq2 7438 | . . . . . . . . 9 ⊢ (𝑘 = 0 → (𝑃↑𝑘) = (𝑃↑0)) | |
20 | 19 | fsum1 15779 | . . . . . . . 8 ⊢ ((0 ∈ ℤ ∧ (𝑃↑0) ∈ ℂ) → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
21 | 16, 18, 20 | sylancr 587 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = (𝑃↑0)) |
22 | 21, 17 | eqtrd 2774 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...0)(𝑃↑𝑘) = 1) |
23 | 15, 22 | eqtrid 2786 | . . . . 5 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) = 1) |
24 | 23, 7 | oveq12d 7448 | . . . 4 ⊢ (𝑃 ∈ ℙ → (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1)) = (1 + 𝑃)) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝑃 ∈ ℙ → 1 ∈ ℕ0) |
26 | nn0uz 12917 | . . . . . 6 ⊢ ℕ0 = (ℤ≥‘0) | |
27 | 25, 26 | eleqtrdi 2848 | . . . . 5 ⊢ (𝑃 ∈ ℙ → 1 ∈ (ℤ≥‘0)) |
28 | elfznn0 13656 | . . . . . 6 ⊢ (𝑘 ∈ (0...1) → 𝑘 ∈ ℕ0) | |
29 | expcl 14116 | . . . . . 6 ⊢ ((𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑃↑𝑘) ∈ ℂ) | |
30 | 6, 28, 29 | syl2an 596 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑘 ∈ (0...1)) → (𝑃↑𝑘) ∈ ℂ) |
31 | oveq2 7438 | . . . . 5 ⊢ (𝑘 = 1 → (𝑃↑𝑘) = (𝑃↑1)) | |
32 | 27, 30, 31 | fsumm1 15783 | . . . 4 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (Σ𝑘 ∈ (0...(1 − 1))(𝑃↑𝑘) + (𝑃↑1))) |
33 | addcom 11444 | . . . . 5 ⊢ ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + 1) = (1 + 𝑃)) | |
34 | 6, 1, 33 | sylancl 586 | . . . 4 ⊢ (𝑃 ∈ ℙ → (𝑃 + 1) = (1 + 𝑃)) |
35 | 24, 32, 34 | 3eqtr4d 2784 | . . 3 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)(𝑃↑𝑘) = (𝑃 + 1)) |
36 | 12, 35 | eqtrd 2774 | . 2 ⊢ (𝑃 ∈ ℙ → Σ𝑘 ∈ (0...1)((𝑃↑𝑐1)↑𝑘) = (𝑃 + 1)) |
37 | 4, 8, 36 | 3eqtr3d 2782 | 1 ⊢ (𝑃 ∈ ℙ → (1 σ 𝑃) = (𝑃 + 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 + caddc 11155 − cmin 11489 ℕ0cn0 12523 ℤcz 12610 ℤ≥cuz 12875 ...cfz 13543 ↑cexp 14098 Σcsu 15718 ℙcprime 16704 ↑𝑐ccxp 26611 σ csgm 27153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ioc 13388 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-fl 13828 df-mod 13906 df-seq 14039 df-exp 14099 df-fac 14309 df-bc 14338 df-hash 14366 df-shft 15102 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-limsup 15503 df-clim 15520 df-rlim 15521 df-sum 15719 df-ef 16099 df-sin 16101 df-cos 16102 df-pi 16104 df-dvds 16287 df-gcd 16528 df-prm 16705 df-pc 16870 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 df-limc 25915 df-dv 25916 df-log 26612 df-cxp 26613 df-sgm 27159 |
This theorem is referenced by: perfect1 27286 |
Copyright terms: Public domain | W3C validator |