![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bpoly0 | Structured version Visualization version GIF version |
Description: The value of the Bernoulli polynomials at zero. (Contributed by Scott Fenton, 16-May-2014.) |
Ref | Expression |
---|---|
bpoly0 | ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11510 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | bpolyval 14987 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ ℂ) → (0 BernPoly 𝑋) = ((𝑋↑0) − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))))) | |
3 | 1, 2 | mpan 664 | . 2 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = ((𝑋↑0) − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))))) |
4 | exp0 13072 | . . . 4 ⊢ (𝑋 ∈ ℂ → (𝑋↑0) = 1) | |
5 | 4 | oveq1d 6809 | . . 3 ⊢ (𝑋 ∈ ℂ → ((𝑋↑0) − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1)))) = (1 − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))))) |
6 | risefall0lem 14964 | . . . . . . 7 ⊢ (0...(0 − 1)) = ∅ | |
7 | 6 | sumeq1i 14637 | . . . . . 6 ⊢ Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))) = Σ𝑘 ∈ ∅ ((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))) |
8 | sum0 14661 | . . . . . 6 ⊢ Σ𝑘 ∈ ∅ ((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))) = 0 | |
9 | 7, 8 | eqtri 2793 | . . . . 5 ⊢ Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1))) = 0 |
10 | 9 | oveq2i 6805 | . . . 4 ⊢ (1 − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1)))) = (1 − 0) |
11 | 1m0e1 11334 | . . . 4 ⊢ (1 − 0) = 1 | |
12 | 10, 11 | eqtri 2793 | . . 3 ⊢ (1 − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1)))) = 1 |
13 | 5, 12 | syl6eq 2821 | . 2 ⊢ (𝑋 ∈ ℂ → ((𝑋↑0) − Σ𝑘 ∈ (0...(0 − 1))((0C𝑘) · ((𝑘 BernPoly 𝑋) / ((0 − 𝑘) + 1)))) = 1) |
14 | 3, 13 | eqtrd 2805 | 1 ⊢ (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 ∅c0 4064 (class class class)co 6794 ℂcc 10137 0cc0 10139 1c1 10140 + caddc 10142 · cmul 10144 − cmin 10469 / cdiv 10887 ℕ0cn0 11495 ...cfz 12534 ↑cexp 13068 Ccbc 13294 Σcsu 14625 BernPoly cbp 14984 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7097 ax-inf2 8703 ax-cnex 10195 ax-resscn 10196 ax-1cn 10197 ax-icn 10198 ax-addcl 10199 ax-addrcl 10200 ax-mulcl 10201 ax-mulrcl 10202 ax-mulcom 10203 ax-addass 10204 ax-mulass 10205 ax-distr 10206 ax-i2m1 10207 ax-1ne0 10208 ax-1rid 10209 ax-rnegex 10210 ax-rrecex 10211 ax-cnre 10212 ax-pre-lttri 10213 ax-pre-lttrn 10214 ax-pre-ltadd 10215 ax-pre-mulgt0 10216 ax-pre-sup 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3589 df-csb 3684 df-dif 3727 df-un 3729 df-in 3731 df-ss 3738 df-pss 3740 df-nul 4065 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5824 df-ord 5870 df-on 5871 df-lim 5872 df-suc 5873 df-iota 5995 df-fun 6034 df-fn 6035 df-f 6036 df-f1 6037 df-fo 6038 df-f1o 6039 df-fv 6040 df-isom 6041 df-riota 6755 df-ov 6797 df-oprab 6798 df-mpt2 6799 df-om 7214 df-1st 7316 df-2nd 7317 df-wrecs 7560 df-recs 7622 df-rdg 7660 df-1o 7714 df-oadd 7718 df-er 7897 df-en 8111 df-dom 8112 df-sdom 8113 df-fin 8114 df-sup 8505 df-oi 8572 df-card 8966 df-pnf 10279 df-mnf 10280 df-xr 10281 df-ltxr 10282 df-le 10283 df-sub 10471 df-neg 10472 df-div 10888 df-nn 11224 df-2 11282 df-3 11283 df-n0 11496 df-z 11581 df-uz 11890 df-rp 12037 df-fz 12535 df-fzo 12675 df-seq 13010 df-exp 13069 df-hash 13323 df-cj 14048 df-re 14049 df-im 14050 df-sqrt 14184 df-abs 14185 df-clim 14428 df-sum 14626 df-bpoly 14985 |
This theorem is referenced by: bpoly1 14989 bpolydiflem 14992 bpoly2 14995 bpoly3 14996 bpoly4 14997 |
Copyright terms: Public domain | W3C validator |