MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem4 Structured version   Visualization version   GIF version

Theorem aaliou3lem4 26324
Description: Lemma for aaliou3 26329. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem4 𝐿 ∈ ℝ
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem4
StepHypRef Expression
1 aaliou3lem.d . . 3 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
2 nnuz 12903 . . . 4 ℕ = (ℤ‘1)
32sumeq1i 15715 . . 3 Σ𝑏 ∈ ℕ (𝐹𝑏) = Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏)
41, 3eqtri 2757 . 2 𝐿 = Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏)
5 1nn 12259 . . 3 1 ∈ ℕ
6 eqid 2734 . . . . 5 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
7 aaliou3lem.c . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
86, 7aaliou3lem3 26322 . . . 4 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
98simp2d 1143 . . 3 (1 ∈ ℕ → Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+)
10 rpre 13025 . . 3 𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ → Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ)
115, 9, 10mp2b 10 . 2 Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ
124, 11eqeltri 2829 1 𝐿 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107   class class class wbr 5123  cmpt 5205  dom cdm 5665  cfv 6541  (class class class)co 7413  cr 11136  1c1 11138   + caddc 11140   · cmul 11142  cle 11278  cmin 11474  -cneg 11475   / cdiv 11902  cn 12248  2c2 12303  cuz 12860  +crp 13016  ...cfz 13529  seqcseq 14024  cexp 14084  !cfa 14294  cli 15502  Σcsu 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-ioc 13374  df-ico 13375  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-fac 14295  df-hash 14352  df-shft 15088  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-limsup 15489  df-clim 15506  df-rlim 15507  df-sum 15705
This theorem is referenced by:  aaliou3lem7  26327  aaliou3lem9  26328
  Copyright terms: Public domain W3C validator