MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem4 Structured version   Visualization version   GIF version

Theorem aaliou3lem4 26255
Description: Lemma for aaliou3 26260. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c ๐น = (๐‘Ž โˆˆ โ„• โ†ฆ (2โ†‘-(!โ€˜๐‘Ž)))
aaliou3lem.d ๐ฟ = ฮฃ๐‘ โˆˆ โ„• (๐นโ€˜๐‘)
aaliou3lem.e ๐ป = (๐‘ โˆˆ โ„• โ†ฆ ฮฃ๐‘ โˆˆ (1...๐‘)(๐นโ€˜๐‘))
Assertion
Ref Expression
aaliou3lem4 ๐ฟ โˆˆ โ„
Distinct variable groups:   ๐‘Ž,๐‘,๐‘   ๐น,๐‘,๐‘   ๐ฟ,๐‘
Allowed substitution hints:   ๐น(๐‘Ž)   ๐ป(๐‘Ž,๐‘,๐‘)   ๐ฟ(๐‘Ž,๐‘)

Proof of Theorem aaliou3lem4
StepHypRef Expression
1 aaliou3lem.d . . 3 ๐ฟ = ฮฃ๐‘ โˆˆ โ„• (๐นโ€˜๐‘)
2 nnuz 12881 . . . 4 โ„• = (โ„คโ‰ฅโ€˜1)
32sumeq1i 15662 . . 3 ฮฃ๐‘ โˆˆ โ„• (๐นโ€˜๐‘) = ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘)
41, 3eqtri 2755 . 2 ๐ฟ = ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘)
5 1nn 12239 . . 3 1 โˆˆ โ„•
6 eqid 2727 . . . . 5 (๐‘ โˆˆ (โ„คโ‰ฅโ€˜1) โ†ฆ ((2โ†‘-(!โ€˜1)) ยท ((1 / 2)โ†‘(๐‘ โˆ’ 1)))) = (๐‘ โˆˆ (โ„คโ‰ฅโ€˜1) โ†ฆ ((2โ†‘-(!โ€˜1)) ยท ((1 / 2)โ†‘(๐‘ โˆ’ 1))))
7 aaliou3lem.c . . . . 5 ๐น = (๐‘Ž โˆˆ โ„• โ†ฆ (2โ†‘-(!โ€˜๐‘Ž)))
86, 7aaliou3lem3 26253 . . . 4 (1 โˆˆ โ„• โ†’ (seq1( + , ๐น) โˆˆ dom โ‡ โˆง ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โˆˆ โ„+ โˆง ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โ‰ค (2 ยท (2โ†‘-(!โ€˜1)))))
98simp2d 1141 . . 3 (1 โˆˆ โ„• โ†’ ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โˆˆ โ„+)
10 rpre 13000 . . 3 (ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โˆˆ โ„+ โ†’ ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โˆˆ โ„)
115, 9, 10mp2b 10 . 2 ฮฃ๐‘ โˆˆ (โ„คโ‰ฅโ€˜1)(๐นโ€˜๐‘) โˆˆ โ„
124, 11eqeltri 2824 1 ๐ฟ โˆˆ โ„
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534   โˆˆ wcel 2099   class class class wbr 5142   โ†ฆ cmpt 5225  dom cdm 5672  โ€˜cfv 6542  (class class class)co 7414  โ„cr 11123  1c1 11125   + caddc 11127   ยท cmul 11129   โ‰ค cle 11265   โˆ’ cmin 11460  -cneg 11461   / cdiv 11887  โ„•cn 12228  2c2 12283  โ„คโ‰ฅcuz 12838  โ„+crp 12992  ...cfz 13502  seqcseq 13984  โ†‘cexp 14044  !cfa 14250   โ‡ cli 15446  ฮฃcsu 15650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-inf2 9650  ax-cnex 11180  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200  ax-pre-mulgt0 11201  ax-pre-sup 11202
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-1st 7985  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8716  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9451  df-inf 9452  df-oi 9519  df-card 9948  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-sub 11462  df-neg 11463  df-div 11888  df-nn 12229  df-2 12291  df-3 12292  df-n0 12489  df-z 12575  df-uz 12839  df-rp 12993  df-ioc 13347  df-ico 13348  df-fz 13503  df-fzo 13646  df-fl 13775  df-seq 13985  df-exp 14045  df-fac 14251  df-hash 14308  df-shft 15032  df-cj 15064  df-re 15065  df-im 15066  df-sqrt 15200  df-abs 15201  df-limsup 15433  df-clim 15450  df-rlim 15451  df-sum 15651
This theorem is referenced by:  aaliou3lem7  26258  aaliou3lem9  26259
  Copyright terms: Public domain W3C validator