MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aaliou3lem4 Structured version   Visualization version   GIF version

Theorem aaliou3lem4 24538
Description: Lemma for aaliou3 24543. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aaliou3lem.c 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
aaliou3lem.d 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
aaliou3lem.e 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹𝑏))
Assertion
Ref Expression
aaliou3lem4 𝐿 ∈ ℝ
Distinct variable groups:   𝑎,𝑏,𝑐   𝐹,𝑏,𝑐   𝐿,𝑐
Allowed substitution hints:   𝐹(𝑎)   𝐻(𝑎,𝑏,𝑐)   𝐿(𝑎,𝑏)

Proof of Theorem aaliou3lem4
StepHypRef Expression
1 aaliou3lem.d . . 3 𝐿 = Σ𝑏 ∈ ℕ (𝐹𝑏)
2 nnuz 12029 . . . 4 ℕ = (ℤ‘1)
32sumeq1i 14836 . . 3 Σ𝑏 ∈ ℕ (𝐹𝑏) = Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏)
41, 3eqtri 2802 . 2 𝐿 = Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏)
5 1nn 11387 . . 3 1 ∈ ℕ
6 eqid 2778 . . . . 5 (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1))))
7 aaliou3lem.c . . . . 5 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎)))
86, 7aaliou3lem3 24536 . . . 4 (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ≤ (2 · (2↑-(!‘1)))))
98simp2d 1134 . . 3 (1 ∈ ℕ → Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+)
10 rpre 12145 . . 3 𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ+ → Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ)
115, 9, 10mp2b 10 . 2 Σ𝑏 ∈ (ℤ‘1)(𝐹𝑏) ∈ ℝ
124, 11eqeltri 2855 1 𝐿 ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wcel 2107   class class class wbr 4886  cmpt 4965  dom cdm 5355  cfv 6135  (class class class)co 6922  cr 10271  1c1 10273   + caddc 10275   · cmul 10277  cle 10412  cmin 10606  -cneg 10607   / cdiv 11032  cn 11374  2c2 11430  cuz 11992  +crp 12137  ...cfz 12643  seqcseq 13119  cexp 13178  !cfa 13378  cli 14623  Σcsu 14824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-oadd 7847  df-er 8026  df-pm 8143  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-n0 11643  df-z 11729  df-uz 11993  df-rp 12138  df-ioc 12492  df-ico 12493  df-fz 12644  df-fzo 12785  df-fl 12912  df-seq 13120  df-exp 13179  df-fac 13379  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825
This theorem is referenced by:  aaliou3lem7  24541  aaliou3lem9  24542
  Copyright terms: Public domain W3C validator