| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > aaliou3lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for aaliou3 26286. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| aaliou3lem.c | ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) |
| aaliou3lem.d | ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) |
| aaliou3lem.e | ⊢ 𝐻 = (𝑐 ∈ ℕ ↦ Σ𝑏 ∈ (1...𝑐)(𝐹‘𝑏)) |
| Ref | Expression |
|---|---|
| aaliou3lem4 | ⊢ 𝐿 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aaliou3lem.d | . . 3 ⊢ 𝐿 = Σ𝑏 ∈ ℕ (𝐹‘𝑏) | |
| 2 | nnuz 12775 | . . . 4 ⊢ ℕ = (ℤ≥‘1) | |
| 3 | 2 | sumeq1i 15604 | . . 3 ⊢ Σ𝑏 ∈ ℕ (𝐹‘𝑏) = Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) |
| 4 | 1, 3 | eqtri 2754 | . 2 ⊢ 𝐿 = Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) |
| 5 | 1nn 12136 | . . 3 ⊢ 1 ∈ ℕ | |
| 6 | eqid 2731 | . . . . 5 ⊢ (𝑐 ∈ (ℤ≥‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) = (𝑐 ∈ (ℤ≥‘1) ↦ ((2↑-(!‘1)) · ((1 / 2)↑(𝑐 − 1)))) | |
| 7 | aaliou3lem.c | . . . . 5 ⊢ 𝐹 = (𝑎 ∈ ℕ ↦ (2↑-(!‘𝑎))) | |
| 8 | 6, 7 | aaliou3lem3 26279 | . . . 4 ⊢ (1 ∈ ℕ → (seq1( + , 𝐹) ∈ dom ⇝ ∧ Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ∈ ℝ+ ∧ Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ≤ (2 · (2↑-(!‘1))))) |
| 9 | 8 | simp2d 1143 | . . 3 ⊢ (1 ∈ ℕ → Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ∈ ℝ+) |
| 10 | rpre 12899 | . . 3 ⊢ (Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ∈ ℝ+ → Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ∈ ℝ) | |
| 11 | 5, 9, 10 | mp2b 10 | . 2 ⊢ Σ𝑏 ∈ (ℤ≥‘1)(𝐹‘𝑏) ∈ ℝ |
| 12 | 4, 11 | eqeltri 2827 | 1 ⊢ 𝐿 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ↦ cmpt 5170 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 · cmul 11011 ≤ cle 11147 − cmin 11344 -cneg 11345 / cdiv 11774 ℕcn 12125 2c2 12180 ℤ≥cuz 12732 ℝ+crp 12890 ...cfz 13407 seqcseq 13908 ↑cexp 13968 !cfa 14180 ⇝ cli 15391 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-ioc 13250 df-ico 13251 df-fz 13408 df-fzo 13555 df-fl 13696 df-seq 13909 df-exp 13969 df-fac 14181 df-hash 14238 df-shft 14974 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-limsup 15378 df-clim 15395 df-rlim 15396 df-sum 15594 |
| This theorem is referenced by: aaliou3lem7 26284 aaliou3lem9 26285 |
| Copyright terms: Public domain | W3C validator |