![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumnn0nn | Structured version Visualization version GIF version |
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumnn0nn.1 | ⊢ (𝑘 = 0 → 𝐴 = 𝐵) |
isumnn0nn.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) |
isumnn0nn.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) |
isumnn0nn.4 | ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumnn0nn | ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12894 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12600 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | isumnn0nn.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) | |
4 | isumnn0nn.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
5 | isumnn0nn.4 | . . 3 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) | |
6 | 1, 2, 3, 4, 5 | isum1p 15819 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = ((𝐹‘0) + Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴)) |
7 | fveq2 6892 | . . . . 5 ⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) | |
8 | isumnn0nn.1 | . . . . 5 ⊢ (𝑘 = 0 → 𝐴 = 𝐵) | |
9 | 7, 8 | eqeq12d 2741 | . . . 4 ⊢ (𝑘 = 0 → ((𝐹‘𝑘) = 𝐴 ↔ (𝐹‘0) = 𝐵)) |
10 | 3 | ralrimiva 3136 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹‘𝑘) = 𝐴) |
11 | 0nn0 12517 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
13 | 9, 10, 12 | rspcdva 3602 | . . 3 ⊢ (𝜑 → (𝐹‘0) = 𝐵) |
14 | 0p1e1 12364 | . . . . . . 7 ⊢ (0 + 1) = 1 | |
15 | 14 | fveq2i 6895 | . . . . . 6 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
16 | nnuz 12895 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | eqtr4i 2756 | . . . . 5 ⊢ (ℤ≥‘(0 + 1)) = ℕ |
18 | 17 | sumeq1i 15676 | . . . 4 ⊢ Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴 |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
20 | 13, 19 | oveq12d 7434 | . 2 ⊢ (𝜑 → ((𝐹‘0) + Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴) = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
21 | 6, 20 | eqtrd 2765 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 dom cdm 5672 ‘cfv 6543 (class class class)co 7416 ℂcc 11136 0cc0 11138 1c1 11139 + caddc 11141 ℕcn 12242 ℕ0cn0 12502 ℤ≥cuz 12852 seqcseq 13998 ⇝ cli 15460 Σcsu 15664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-sum 15665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |