Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isumnn0nn | Structured version Visualization version GIF version |
Description: Sum from 0 to infinity in terms of sum from 1 to infinity. (Contributed by NM, 2-Jan-2006.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumnn0nn.1 | ⊢ (𝑘 = 0 → 𝐴 = 𝐵) |
isumnn0nn.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) |
isumnn0nn.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) |
isumnn0nn.4 | ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumnn0nn | ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12670 | . . 3 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | 0zd 12381 | . . 3 ⊢ (𝜑 → 0 ∈ ℤ) | |
3 | isumnn0nn.2 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐹‘𝑘) = 𝐴) | |
4 | isumnn0nn.3 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝐴 ∈ ℂ) | |
5 | isumnn0nn.4 | . . 3 ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) | |
6 | 1, 2, 3, 4, 5 | isum1p 15602 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = ((𝐹‘0) + Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴)) |
7 | fveq2 6804 | . . . . 5 ⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) | |
8 | isumnn0nn.1 | . . . . 5 ⊢ (𝑘 = 0 → 𝐴 = 𝐵) | |
9 | 7, 8 | eqeq12d 2752 | . . . 4 ⊢ (𝑘 = 0 → ((𝐹‘𝑘) = 𝐴 ↔ (𝐹‘0) = 𝐵)) |
10 | 3 | ralrimiva 3140 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ ℕ0 (𝐹‘𝑘) = 𝐴) |
11 | 0nn0 12298 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
12 | 11 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ ℕ0) |
13 | 9, 10, 12 | rspcdva 3567 | . . 3 ⊢ (𝜑 → (𝐹‘0) = 𝐵) |
14 | 0p1e1 12145 | . . . . . . 7 ⊢ (0 + 1) = 1 | |
15 | 14 | fveq2i 6807 | . . . . . 6 ⊢ (ℤ≥‘(0 + 1)) = (ℤ≥‘1) |
16 | nnuz 12671 | . . . . . 6 ⊢ ℕ = (ℤ≥‘1) | |
17 | 15, 16 | eqtr4i 2767 | . . . . 5 ⊢ (ℤ≥‘(0 + 1)) = ℕ |
18 | 17 | sumeq1i 15459 | . . . 4 ⊢ Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴 |
19 | 18 | a1i 11 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴 = Σ𝑘 ∈ ℕ 𝐴) |
20 | 13, 19 | oveq12d 7325 | . 2 ⊢ (𝜑 → ((𝐹‘0) + Σ𝑘 ∈ (ℤ≥‘(0 + 1))𝐴) = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
21 | 6, 20 | eqtrd 2776 | 1 ⊢ (𝜑 → Σ𝑘 ∈ ℕ0 𝐴 = (𝐵 + Σ𝑘 ∈ ℕ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 dom cdm 5600 ‘cfv 6458 (class class class)co 7307 ℂcc 10919 0cc0 10921 1c1 10922 + caddc 10924 ℕcn 12023 ℕ0cn0 12283 ℤ≥cuz 12632 seqcseq 13771 ⇝ cli 15242 Σcsu 15446 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-inf2 9447 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 ax-pre-sup 10999 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3304 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-sup 9249 df-oi 9317 df-card 9745 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-3 12087 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-fz 13290 df-fzo 13433 df-seq 13772 df-exp 13833 df-hash 14095 df-cj 14859 df-re 14860 df-im 14861 df-sqrt 14995 df-abs 14996 df-clim 15246 df-sum 15447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |