| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsump1i | Structured version Visualization version GIF version | ||
| Description: Optimized version of fsump1 15663 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.) |
| Ref | Expression |
|---|---|
| fsump1i.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| fsump1i.2 | ⊢ 𝑁 = (𝐾 + 1) |
| fsump1i.3 | ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) |
| fsump1i.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) |
| fsump1i.5 | ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) |
| fsump1i.6 | ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) |
| Ref | Expression |
|---|---|
| fsump1i | ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsump1i.2 | . . 3 ⊢ 𝑁 = (𝐾 + 1) | |
| 2 | fsump1i.5 | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)) | |
| 3 | 2 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ 𝑍) |
| 4 | fsump1i.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 5 | 3, 4 | eleqtrdi 2838 | . . . 4 ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑀)) |
| 6 | peano2uz 12802 | . . . . 5 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ (ℤ≥‘𝑀)) | |
| 7 | 6, 4 | eleqtrrdi 2839 | . . . 4 ⊢ (𝐾 ∈ (ℤ≥‘𝑀) → (𝐾 + 1) ∈ 𝑍) |
| 8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → (𝐾 + 1) ∈ 𝑍) |
| 9 | 1, 8 | eqeltrid 2832 | . 2 ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
| 10 | 1 | oveq2i 7360 | . . . . 5 ⊢ (𝑀...𝑁) = (𝑀...(𝐾 + 1)) |
| 11 | 10 | sumeq1i 15604 | . . . 4 ⊢ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 |
| 12 | elfzuz 13423 | . . . . . . 7 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) | |
| 13 | 12, 4 | eleqtrrdi 2839 | . . . . . 6 ⊢ (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ 𝑍) |
| 14 | fsump1i.4 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℂ) | |
| 15 | 13, 14 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ) |
| 16 | 1 | eqeq2i 2742 | . . . . . 6 ⊢ (𝑘 = 𝑁 ↔ 𝑘 = (𝐾 + 1)) |
| 17 | fsump1i.3 | . . . . . 6 ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐵) | |
| 18 | 16, 17 | sylbir 235 | . . . . 5 ⊢ (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵) |
| 19 | 5, 15, 18 | fsump1 15663 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
| 20 | 11, 19 | eqtrid 2776 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵)) |
| 21 | 2 | simprd 495 | . . . 4 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆) |
| 22 | 21 | oveq1d 7364 | . . 3 ⊢ (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵)) |
| 23 | fsump1i.6 | . . 3 ⊢ (𝜑 → (𝑆 + 𝐵) = 𝑇) | |
| 24 | 20, 22, 23 | 3eqtrd 2768 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇) |
| 25 | 9, 24 | jca 511 | 1 ⊢ (𝜑 → (𝑁 ∈ 𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 1c1 11010 + caddc 11012 ℤ≥cuz 12735 ...cfz 13410 Σcsu 15593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-sum 15594 |
| This theorem is referenced by: cphipval 25141 itgcnlem 25689 vieta1 26218 ipval2 30651 subfacval2 35160 |
| Copyright terms: Public domain | W3C validator |