Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsump1i Structured version   Visualization version   GIF version

Theorem fsump1i 15114
 Description: Optimized version of fsump1 15101 for making sums of a concrete number of terms. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsump1i.1 𝑍 = (ℤ𝑀)
fsump1i.2 𝑁 = (𝐾 + 1)
fsump1i.3 (𝑘 = 𝑁𝐴 = 𝐵)
fsump1i.4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
fsump1i.5 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
fsump1i.6 (𝜑 → (𝑆 + 𝐵) = 𝑇)
Assertion
Ref Expression
fsump1i (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   𝐴(𝑘)   𝑆(𝑘)   𝑇(𝑘)   𝑍(𝑘)

Proof of Theorem fsump1i
StepHypRef Expression
1 fsump1i.2 . . 3 𝑁 = (𝐾 + 1)
2 fsump1i.5 . . . . . 6 (𝜑 → (𝐾𝑍 ∧ Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆))
32simpld 495 . . . . 5 (𝜑𝐾𝑍)
4 fsump1i.1 . . . . 5 𝑍 = (ℤ𝑀)
53, 4syl6eleq 2928 . . . 4 (𝜑𝐾 ∈ (ℤ𝑀))
6 peano2uz 12290 . . . . 5 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ (ℤ𝑀))
76, 4syl6eleqr 2929 . . . 4 (𝐾 ∈ (ℤ𝑀) → (𝐾 + 1) ∈ 𝑍)
85, 7syl 17 . . 3 (𝜑 → (𝐾 + 1) ∈ 𝑍)
91, 8eqeltrid 2922 . 2 (𝜑𝑁𝑍)
101oveq2i 7159 . . . . 5 (𝑀...𝑁) = (𝑀...(𝐾 + 1))
1110sumeq1i 15045 . . . 4 Σ𝑘 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴
12 elfzuz 12894 . . . . . . 7 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘 ∈ (ℤ𝑀))
1312, 4syl6eleqr 2929 . . . . . 6 (𝑘 ∈ (𝑀...(𝐾 + 1)) → 𝑘𝑍)
14 fsump1i.4 . . . . . 6 ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)
1513, 14sylan2 592 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝐾 + 1))) → 𝐴 ∈ ℂ)
161eqeq2i 2839 . . . . . 6 (𝑘 = 𝑁𝑘 = (𝐾 + 1))
17 fsump1i.3 . . . . . 6 (𝑘 = 𝑁𝐴 = 𝐵)
1816, 17sylbir 236 . . . . 5 (𝑘 = (𝐾 + 1) → 𝐴 = 𝐵)
195, 15, 18fsump1 15101 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...(𝐾 + 1))𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
2011, 19syl5eq 2873 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵))
212simprd 496 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀...𝐾)𝐴 = 𝑆)
2221oveq1d 7163 . . 3 (𝜑 → (Σ𝑘 ∈ (𝑀...𝐾)𝐴 + 𝐵) = (𝑆 + 𝐵))
23 fsump1i.6 . . 3 (𝜑 → (𝑆 + 𝐵) = 𝑇)
2420, 22, 233eqtrd 2865 . 2 (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇)
259, 24jca 512 1 (𝜑 → (𝑁𝑍 ∧ Σ𝑘 ∈ (𝑀...𝑁)𝐴 = 𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   = wceq 1530   ∈ wcel 2107  ‘cfv 6352  (class class class)co 7148  ℂcc 10524  1c1 10527   + caddc 10529  ℤ≥cuz 12232  ...cfz 12882  Σcsu 15032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-inf2 9093  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-isom 6361  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-sup 8895  df-oi 8963  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-2 11689  df-3 11690  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fz 12883  df-fzo 13024  df-seq 13360  df-exp 13420  df-hash 13681  df-cj 14448  df-re 14449  df-im 14450  df-sqrt 14584  df-abs 14585  df-clim 14835  df-sum 15033 This theorem is referenced by:  cphipval  23764  itgcnlem  24308  vieta1  24819  ipval2  28401  subfacval2  32321
 Copyright terms: Public domain W3C validator