![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > supicclub | Structured version Visualization version GIF version |
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.) |
Ref | Expression |
---|---|
supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
Ref | Expression |
---|---|
supicclub | ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | supicc.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | iccssre 13402 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
5 | 2, 3, 4 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
6 | 1, 5 | sstrd 3984 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
7 | supicc.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
8 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
9 | 8 | rexrd 11260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
11 | 10 | rexrd 11260 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
12 | 1 | sselda 3974 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵[,]𝐶)) |
13 | iccleub 13375 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ≤ 𝐶) | |
14 | 9, 11, 12, 13 | syl3anc 1368 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝐶) |
15 | 14 | ralrimiva 3138 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) |
16 | brralrspcev 5198 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) | |
17 | 3, 15, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
18 | supiccub.1 | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
19 | 6, 18 | sseldd 3975 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℝ) |
20 | suprlub 12174 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐷 ∈ ℝ) → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) | |
21 | 6, 7, 17, 19, 20 | syl31anc 1370 | 1 ⊢ (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧 ∈ 𝐴 𝐷 < 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ⊆ wss 3940 ∅c0 4314 class class class wbr 5138 (class class class)co 7401 supcsup 9430 ℝcr 11104 ℝ*cxr 11243 < clt 11244 ≤ cle 11245 [,]cicc 13323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 ax-pre-sup 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-sup 9432 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-icc 13327 |
This theorem is referenced by: supicclub2 13477 |
Copyright terms: Public domain | W3C validator |