MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supicclub Structured version   Visualization version   GIF version

Theorem supicclub 12881
Description: The supremum of a bounded set of real numbers is the least upper bound. (Contributed by Thierry Arnoux, 23-May-2019.)
Hypotheses
Ref Expression
supicc.1 (𝜑𝐵 ∈ ℝ)
supicc.2 (𝜑𝐶 ∈ ℝ)
supicc.3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
supicc.4 (𝜑𝐴 ≠ ∅)
supiccub.1 (𝜑𝐷𝐴)
Assertion
Ref Expression
supicclub (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐷
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝐶(𝑧)

Proof of Theorem supicclub
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supicc.3 . . 3 (𝜑𝐴 ⊆ (𝐵[,]𝐶))
2 supicc.1 . . . 4 (𝜑𝐵 ∈ ℝ)
3 supicc.2 . . . 4 (𝜑𝐶 ∈ ℝ)
4 iccssre 12807 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ)
52, 3, 4syl2anc 587 . . 3 (𝜑 → (𝐵[,]𝐶) ⊆ ℝ)
61, 5sstrd 3952 . 2 (𝜑𝐴 ⊆ ℝ)
7 supicc.4 . 2 (𝜑𝐴 ≠ ∅)
82adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
98rexrd 10680 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
103adantr 484 . . . . . 6 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
1110rexrd 10680 . . . . 5 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ*)
121sselda 3942 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ (𝐵[,]𝐶))
13 iccleub 12780 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*𝑥 ∈ (𝐵[,]𝐶)) → 𝑥𝐶)
149, 11, 12, 13syl3anc 1368 . . . 4 ((𝜑𝑥𝐴) → 𝑥𝐶)
1514ralrimiva 3174 . . 3 (𝜑 → ∀𝑥𝐴 𝑥𝐶)
16 brralrspcev 5102 . . 3 ((𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝐶) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
173, 15, 16syl2anc 587 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
18 supiccub.1 . . 3 (𝜑𝐷𝐴)
196, 18sseldd 3943 . 2 (𝜑𝐷 ∈ ℝ)
20 suprlub 11592 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝐷 ∈ ℝ) → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
216, 7, 17, 19, 20syl31anc 1370 1 (𝜑 → (𝐷 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐷 < 𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2114  wne 3011  wral 3130  wrex 3131  wss 3908  c0 4265   class class class wbr 5042  (class class class)co 7140  supcsup 8892  cr 10525  *cxr 10663   < clt 10664  cle 10665  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-po 5451  df-so 5452  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-icc 12733
This theorem is referenced by:  supicclub2  12882
  Copyright terms: Public domain W3C validator