| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supiccub | Structured version Visualization version GIF version | ||
| Description: The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.) |
| Ref | Expression |
|---|---|
| supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
| supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| supiccub | ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
| 2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | iccssre 13366 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
| 6 | 1, 5 | sstrd 3954 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 7 | supicc.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 8 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11200 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 11 | 10 | rexrd 11200 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
| 12 | 1 | sselda 3943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 13 | iccleub 13338 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ≤ 𝐶) | |
| 14 | 9, 11, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝐶) |
| 15 | 14 | ralrimiva 3125 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) |
| 16 | brralrspcev 5162 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) | |
| 17 | 3, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
| 18 | supiccub.1 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 19 | 6, 7, 17, 18 | suprubd 12121 | 1 ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3911 ∅c0 4292 class class class wbr 5102 (class class class)co 7369 supcsup 9367 ℝcr 11043 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 [,]cicc 13285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-icc 13289 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |