| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supiccub | Structured version Visualization version GIF version | ||
| Description: The supremum of a bounded set of real numbers is an upper bound. (Contributed by Thierry Arnoux, 20-May-2019.) |
| Ref | Expression |
|---|---|
| supicc.1 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| supicc.2 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| supicc.3 | ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) |
| supicc.4 | ⊢ (𝜑 → 𝐴 ≠ ∅) |
| supiccub.1 | ⊢ (𝜑 → 𝐷 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| supiccub | ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supicc.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) | |
| 2 | supicc.1 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | supicc.2 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | iccssre 13396 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵[,]𝐶) ⊆ ℝ) | |
| 5 | 2, 3, 4 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐵[,]𝐶) ⊆ ℝ) |
| 6 | 1, 5 | sstrd 3959 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 7 | supicc.4 | . 2 ⊢ (𝜑 → 𝐴 ≠ ∅) | |
| 8 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 9 | 8 | rexrd 11230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 10 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 11 | 10 | rexrd 11230 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ*) |
| 12 | 1 | sselda 3948 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ (𝐵[,]𝐶)) |
| 13 | iccleub 13368 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ (𝐵[,]𝐶)) → 𝑥 ≤ 𝐶) | |
| 14 | 9, 11, 12, 13 | syl3anc 1373 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝐶) |
| 15 | 14 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) |
| 16 | brralrspcev 5169 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝐶) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) | |
| 17 | 3, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
| 18 | supiccub.1 | . 2 ⊢ (𝜑 → 𝐷 ∈ 𝐴) | |
| 19 | 6, 7, 17, 18 | suprubd 12151 | 1 ⊢ (𝜑 → 𝐷 ≤ sup(𝐴, ℝ, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3916 ∅c0 4298 class class class wbr 5109 (class class class)co 7389 supcsup 9397 ℝcr 11073 ℝ*cxr 11213 < clt 11214 ≤ cle 11215 [,]cicc 13315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-po 5548 df-so 5549 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-sup 9399 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-icc 13319 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |