![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suplesup2 | Structured version Visualization version GIF version |
Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
suplesup2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
suplesup2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
suplesup2.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
Ref | Expression |
---|---|
suplesup2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplesup2.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
2 | suplesup2.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
3 | 2 | sselda 3977 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
4 | 3 | 3ad2ant1 1130 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ ℝ*) |
5 | simp1l 1194 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝜑) | |
6 | simp2 1134 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) | |
7 | suplesup2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
8 | 7 | sselda 3977 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ*) |
9 | 5, 6, 8 | syl2anc 583 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℝ*) |
10 | supxrcl 13300 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*) | |
11 | 7, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
13 | simp3 1135 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) | |
14 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ ℝ*) |
15 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
16 | supxrub 13309 | . . . . . . . . 9 ⊢ ((𝐵 ⊆ ℝ* ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) | |
17 | 14, 15, 16 | syl2anc 583 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
18 | 5, 6, 17 | syl2anc 583 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
19 | 4, 9, 12, 13, 18 | xrletrd 13147 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
20 | 19 | 3exp 1116 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < )))) |
21 | 20 | rexlimdv 3147 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
22 | 1, 21 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
23 | 22 | ralrimiva 3140 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )) |
24 | supxrleub 13311 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) | |
25 | 2, 11, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
26 | 23, 25 | mpbird 257 | 1 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 class class class wbr 5141 supcsup 9437 ℝ*cxr 11251 < clt 11252 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: sge0reuz 45735 |
Copyright terms: Public domain | W3C validator |