Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup2 Structured version   Visualization version   GIF version

Theorem suplesup2 41650
Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
suplesup2.a (𝜑𝐴 ⊆ ℝ*)
suplesup2.b (𝜑𝐵 ⊆ ℝ*)
suplesup2.c ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
Assertion
Ref Expression
suplesup2 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem suplesup2
StepHypRef Expression
1 suplesup2.c . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
2 suplesup2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
32sselda 3970 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
433ad2ant1 1129 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ∈ ℝ*)
5 simp1l 1193 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝜑)
6 simp2 1133 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦𝐵)
7 suplesup2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
87sselda 3970 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ*)
95, 6, 8syl2anc 586 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ∈ ℝ*)
10 supxrcl 12711 . . . . . . . . 9 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
117, 10syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
125, 11syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
13 simp3 1134 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥𝑦)
147adantr 483 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐵 ⊆ ℝ*)
15 simpr 487 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑦𝐵)
16 supxrub 12720 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
1714, 15, 16syl2anc 586 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
185, 6, 17syl2anc 586 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
194, 9, 12, 13, 18xrletrd 12558 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
20193exp 1115 . . . . 5 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < ))))
2120rexlimdv 3286 . . . 4 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < )))
221, 21mpd 15 . . 3 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
2322ralrimiva 3185 . 2 (𝜑 → ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))
24 supxrleub 12722 . . 3 ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
252, 11, 24syl2anc 586 . 2 (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
2623, 25mpbird 259 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wcel 2113  wral 3141  wrex 3142  wss 3939   class class class wbr 5069  supcsup 8907  *cxr 10677   < clt 10678  cle 10679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-sup 8909  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876
This theorem is referenced by:  sge0reuz  42736
  Copyright terms: Public domain W3C validator