| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suplesup2 | Structured version Visualization version GIF version | ||
| Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| Ref | Expression |
|---|---|
| suplesup2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| suplesup2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
| suplesup2.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
| Ref | Expression |
|---|---|
| suplesup2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suplesup2.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
| 2 | suplesup2.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
| 3 | 2 | sselda 3946 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 4 | 3 | 3ad2ant1 1133 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ ℝ*) |
| 5 | simp1l 1198 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝜑) | |
| 6 | simp2 1137 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) | |
| 7 | suplesup2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
| 8 | 7 | sselda 3946 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ*) |
| 9 | 5, 6, 8 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℝ*) |
| 10 | supxrcl 13275 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*) | |
| 11 | 7, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
| 12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
| 13 | simp3 1138 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) | |
| 14 | 7 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ ℝ*) |
| 15 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
| 16 | supxrub 13284 | . . . . . . . . 9 ⊢ ((𝐵 ⊆ ℝ* ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) | |
| 17 | 14, 15, 16 | syl2anc 584 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
| 18 | 5, 6, 17 | syl2anc 584 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
| 19 | 4, 9, 12, 13, 18 | xrletrd 13122 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
| 20 | 19 | 3exp 1119 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < )))) |
| 21 | 20 | rexlimdv 3132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
| 22 | 1, 21 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
| 23 | 22 | ralrimiva 3125 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )) |
| 24 | supxrleub 13286 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) | |
| 25 | 2, 11, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
| 26 | 23, 25 | mpbird 257 | 1 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 supcsup 9391 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: sge0reuz 46445 |
| Copyright terms: Public domain | W3C validator |