Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup2 Structured version   Visualization version   GIF version

Theorem suplesup2 45345
Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
suplesup2.a (𝜑𝐴 ⊆ ℝ*)
suplesup2.b (𝜑𝐵 ⊆ ℝ*)
suplesup2.c ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
Assertion
Ref Expression
suplesup2 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem suplesup2
StepHypRef Expression
1 suplesup2.c . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
2 suplesup2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
32sselda 3943 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
433ad2ant1 1133 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ∈ ℝ*)
5 simp1l 1198 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝜑)
6 simp2 1137 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦𝐵)
7 suplesup2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
87sselda 3943 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ*)
95, 6, 8syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ∈ ℝ*)
10 supxrcl 13251 . . . . . . . . 9 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
117, 10syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
125, 11syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
13 simp3 1138 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥𝑦)
147adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐵 ⊆ ℝ*)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑦𝐵)
16 supxrub 13260 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
1714, 15, 16syl2anc 584 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
185, 6, 17syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
194, 9, 12, 13, 18xrletrd 13098 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
20193exp 1119 . . . . 5 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < ))))
2120rexlimdv 3132 . . . 4 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < )))
221, 21mpd 15 . . 3 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
2322ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))
24 supxrleub 13262 . . 3 ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
252, 11, 24syl2anc 584 . 2 (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
2623, 25mpbird 257 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  supcsup 9367  *cxr 11183   < clt 11184  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384
This theorem is referenced by:  sge0reuz  46418
  Copyright terms: Public domain W3C validator