Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suplesup2 Structured version   Visualization version   GIF version

Theorem suplesup2 45536
Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
suplesup2.a (𝜑𝐴 ⊆ ℝ*)
suplesup2.b (𝜑𝐵 ⊆ ℝ*)
suplesup2.c ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
Assertion
Ref Expression
suplesup2 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜑,𝑥,𝑦

Proof of Theorem suplesup2
StepHypRef Expression
1 suplesup2.c . . . 4 ((𝜑𝑥𝐴) → ∃𝑦𝐵 𝑥𝑦)
2 suplesup2.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℝ*)
32sselda 3930 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
433ad2ant1 1133 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ∈ ℝ*)
5 simp1l 1198 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝜑)
6 simp2 1137 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦𝐵)
7 suplesup2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
87sselda 3930 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ∈ ℝ*)
95, 6, 8syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ∈ ℝ*)
10 supxrcl 13221 . . . . . . . . 9 (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*)
117, 10syl 17 . . . . . . . 8 (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*)
125, 11syl 17 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*)
13 simp3 1138 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥𝑦)
147adantr 480 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝐵 ⊆ ℝ*)
15 simpr 484 . . . . . . . . 9 ((𝜑𝑦𝐵) → 𝑦𝐵)
16 supxrub 13230 . . . . . . . . 9 ((𝐵 ⊆ ℝ*𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
1714, 15, 16syl2anc 584 . . . . . . . 8 ((𝜑𝑦𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
185, 6, 17syl2anc 584 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < ))
194, 9, 12, 13, 18xrletrd 13067 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑦𝐵𝑥𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
20193exp 1119 . . . . 5 ((𝜑𝑥𝐴) → (𝑦𝐵 → (𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < ))))
2120rexlimdv 3132 . . . 4 ((𝜑𝑥𝐴) → (∃𝑦𝐵 𝑥𝑦𝑥 ≤ sup(𝐵, ℝ*, < )))
221, 21mpd 15 . . 3 ((𝜑𝑥𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < ))
2322ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))
24 supxrleub 13232 . . 3 ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
252, 11, 24syl2anc 584 . 2 (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )))
2623, 25mpbird 257 1 (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113  wral 3048  wrex 3057  wss 3898   class class class wbr 5095  supcsup 9335  *cxr 11156   < clt 11157  cle 11158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358
This theorem is referenced by:  sge0reuz  46607
  Copyright terms: Public domain W3C validator