![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > suplesup2 | Structured version Visualization version GIF version |
Description: If any element of 𝐴 is less than or equal to an element in 𝐵, then the supremum of 𝐴 is less than or equal to the supremum of 𝐵. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
suplesup2.a | ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
suplesup2.b | ⊢ (𝜑 → 𝐵 ⊆ ℝ*) |
suplesup2.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) |
Ref | Expression |
---|---|
suplesup2 | ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suplesup2.c | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦) | |
2 | suplesup2.a | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | |
3 | 2 | sselda 3827 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
4 | 3 | 3ad2ant1 1167 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ∈ ℝ*) |
5 | simp1l 1258 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝜑) | |
6 | simp2 1171 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ 𝐵) | |
7 | suplesup2.b | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ⊆ ℝ*) | |
8 | 7 | sselda 3827 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ ℝ*) |
9 | 5, 6, 8 | syl2anc 579 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ∈ ℝ*) |
10 | supxrcl 12440 | . . . . . . . . 9 ⊢ (𝐵 ⊆ ℝ* → sup(𝐵, ℝ*, < ) ∈ ℝ*) | |
11 | 7, 10 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
12 | 5, 11 | syl 17 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → sup(𝐵, ℝ*, < ) ∈ ℝ*) |
13 | simp3 1172 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ 𝑦) | |
14 | 7 | adantr 474 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝐵 ⊆ ℝ*) |
15 | simpr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | |
16 | supxrub 12449 | . . . . . . . . 9 ⊢ ((𝐵 ⊆ ℝ* ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) | |
17 | 14, 15, 16 | syl2anc 579 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
18 | 5, 6, 17 | syl2anc 579 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑦 ≤ sup(𝐵, ℝ*, < )) |
19 | 4, 9, 12, 13, 18 | xrletrd 12288 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 ∈ 𝐵 ∧ 𝑥 ≤ 𝑦) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
20 | 19 | 3exp 1152 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑦 ∈ 𝐵 → (𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < )))) |
21 | 20 | rexlimdv 3239 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (∃𝑦 ∈ 𝐵 𝑥 ≤ 𝑦 → 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
22 | 1, 21 | mpd 15 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ sup(𝐵, ℝ*, < )) |
23 | 22 | ralrimiva 3175 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < )) |
24 | supxrleub 12451 | . . 3 ⊢ ((𝐴 ⊆ ℝ* ∧ sup(𝐵, ℝ*, < ) ∈ ℝ*) → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) | |
25 | 2, 11, 24 | syl2anc 579 | . 2 ⊢ (𝜑 → (sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < ) ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ sup(𝐵, ℝ*, < ))) |
26 | 23, 25 | mpbird 249 | 1 ⊢ (𝜑 → sup(𝐴, ℝ*, < ) ≤ sup(𝐵, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∧ w3a 1111 ∈ wcel 2164 ∀wral 3117 ∃wrex 3118 ⊆ wss 3798 class class class wbr 4875 supcsup 8621 ℝ*cxr 10397 < clt 10398 ≤ cle 10399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 |
This theorem is referenced by: sge0reuz 41449 |
Copyright terms: Public domain | W3C validator |