Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > recnnltrp | Structured version Visualization version GIF version |
Description: 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
recnnltrp.1 | ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) |
Ref | Expression |
---|---|
recnnltrp | ⊢ (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnnltrp.1 | . . 3 ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) | |
2 | rpreccl 12457 | . . . . . 6 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ+) | |
3 | 2 | rpred 12473 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ) |
4 | 2 | rpge0d 12477 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → 0 ≤ (1 / 𝐸)) |
5 | flge0nn0 13240 | . . . . 5 ⊢ (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0) | |
6 | 3, 4, 5 | syl2anc 588 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → (⌊‘(1 / 𝐸)) ∈ ℕ0) |
7 | nn0p1nn 11974 | . . . 4 ⊢ ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐸 ∈ ℝ+ → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ) |
9 | 1, 8 | eqeltrid 2857 | . 2 ⊢ (𝐸 ∈ ℝ+ → 𝑁 ∈ ℕ) |
10 | flltp1 13220 | . . . . . 6 ⊢ ((1 / 𝐸) ∈ ℝ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1)) | |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1)) |
12 | 11, 1 | breqtrrdi 5075 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) < 𝑁) |
13 | 9 | nnrpd 12471 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → 𝑁 ∈ ℝ+) |
14 | 2, 13 | ltrecd 12491 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → ((1 / 𝐸) < 𝑁 ↔ (1 / 𝑁) < (1 / (1 / 𝐸)))) |
15 | 12, 14 | mpbid 235 | . . 3 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝑁) < (1 / (1 / 𝐸))) |
16 | rpcn 12441 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → 𝐸 ∈ ℂ) | |
17 | rpne0 12447 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → 𝐸 ≠ 0) | |
18 | 16, 17 | recrecd 11452 | . . 3 ⊢ (𝐸 ∈ ℝ+ → (1 / (1 / 𝐸)) = 𝐸) |
19 | 15, 18 | breqtrd 5059 | . 2 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝑁) < 𝐸) |
20 | 9, 19 | jca 516 | 1 ⊢ (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 400 = wceq 1539 ∈ wcel 2112 class class class wbr 5033 ‘cfv 6336 (class class class)co 7151 ℝcr 10575 0cc0 10576 1c1 10577 + caddc 10579 < clt 10714 ≤ cle 10715 / cdiv 11336 ℕcn 11675 ℕ0cn0 11935 ℝ+crp 12431 ⌊cfl 13210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10632 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 ax-pre-mulgt0 10653 ax-pre-sup 10654 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-sup 8940 df-inf 8941 df-pnf 10716 df-mnf 10717 df-xr 10718 df-ltxr 10719 df-le 10720 df-sub 10911 df-neg 10912 df-div 11337 df-nn 11676 df-n0 11936 df-z 12022 df-uz 12284 df-rp 12432 df-fl 13212 |
This theorem is referenced by: vonioolem1 43686 |
Copyright terms: Public domain | W3C validator |