![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > recnnltrp | Structured version Visualization version GIF version |
Description: 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
recnnltrp.1 | ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) |
Ref | Expression |
---|---|
recnnltrp | ⊢ (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recnnltrp.1 | . . 3 ⊢ 𝑁 = ((⌊‘(1 / 𝐸)) + 1) | |
2 | rpreccl 12140 | . . . . . 6 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ+) | |
3 | 2 | rpred 12156 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) ∈ ℝ) |
4 | 2 | rpge0d 12160 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → 0 ≤ (1 / 𝐸)) |
5 | flge0nn0 12916 | . . . . 5 ⊢ (((1 / 𝐸) ∈ ℝ ∧ 0 ≤ (1 / 𝐸)) → (⌊‘(1 / 𝐸)) ∈ ℕ0) | |
6 | 3, 4, 5 | syl2anc 581 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → (⌊‘(1 / 𝐸)) ∈ ℕ0) |
7 | nn0p1nn 11659 | . . . 4 ⊢ ((⌊‘(1 / 𝐸)) ∈ ℕ0 → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐸 ∈ ℝ+ → ((⌊‘(1 / 𝐸)) + 1) ∈ ℕ) |
9 | 1, 8 | syl5eqel 2910 | . 2 ⊢ (𝐸 ∈ ℝ+ → 𝑁 ∈ ℕ) |
10 | flltp1 12896 | . . . . . 6 ⊢ ((1 / 𝐸) ∈ ℝ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1)) | |
11 | 3, 10 | syl 17 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) < ((⌊‘(1 / 𝐸)) + 1)) |
12 | 11, 1 | syl6breqr 4915 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝐸) < 𝑁) |
13 | 9 | nnrpd 12154 | . . . . 5 ⊢ (𝐸 ∈ ℝ+ → 𝑁 ∈ ℝ+) |
14 | 2, 13 | ltrecd 12174 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → ((1 / 𝐸) < 𝑁 ↔ (1 / 𝑁) < (1 / (1 / 𝐸)))) |
15 | 12, 14 | mpbid 224 | . . 3 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝑁) < (1 / (1 / 𝐸))) |
16 | rpcn 12124 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → 𝐸 ∈ ℂ) | |
17 | rpne0 12130 | . . . 4 ⊢ (𝐸 ∈ ℝ+ → 𝐸 ≠ 0) | |
18 | 16, 17 | recrecd 11124 | . . 3 ⊢ (𝐸 ∈ ℝ+ → (1 / (1 / 𝐸)) = 𝐸) |
19 | 15, 18 | breqtrd 4899 | . 2 ⊢ (𝐸 ∈ ℝ+ → (1 / 𝑁) < 𝐸) |
20 | 9, 19 | jca 509 | 1 ⊢ (𝐸 ∈ ℝ+ → (𝑁 ∈ ℕ ∧ (1 / 𝑁) < 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 class class class wbr 4873 ‘cfv 6123 (class class class)co 6905 ℝcr 10251 0cc0 10252 1c1 10253 + caddc 10255 < clt 10391 ≤ cle 10392 / cdiv 11009 ℕcn 11350 ℕ0cn0 11618 ℝ+crp 12112 ⌊cfl 12886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 ax-pre-sup 10330 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-sup 8617 df-inf 8618 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-div 11010 df-nn 11351 df-n0 11619 df-z 11705 df-uz 11969 df-rp 12113 df-fl 12888 |
This theorem is referenced by: vonioolem1 41688 |
Copyright terms: Public domain | W3C validator |