![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2ub | Structured version Visualization version GIF version |
Description: An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) |
Ref | Expression |
---|---|
dya2ub | ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2z 12598 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
2 | uzid 12841 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
4 | relogbzcl 26503 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ ℝ+) → (2 logb 𝑅) ∈ ℝ) | |
5 | 3, 4 | mpan 688 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℝ) |
6 | 5 | renegcld 11645 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) ∈ ℝ) |
7 | flltp1 13769 | . . . 4 ⊢ (-(2 logb 𝑅) ∈ ℝ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) |
9 | 1z 12596 | . . . . 5 ⊢ 1 ∈ ℤ | |
10 | fladdz 13794 | . . . . 5 ⊢ ((-(2 logb 𝑅) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) | |
11 | 6, 9, 10 | sylancl 586 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) |
12 | 5 | recnd 11246 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℂ) |
13 | ax-1cn 11170 | . . . . . 6 ⊢ 1 ∈ ℂ | |
14 | negsubdi 11520 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (-(2 logb 𝑅) + 1)) | |
15 | negsubdi2 11523 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (1 − (2 logb 𝑅))) | |
16 | 14, 15 | eqtr3d 2774 | . . . . . 6 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) |
17 | 12, 13, 16 | sylancl 586 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) |
18 | 17 | fveq2d 6895 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = (⌊‘(1 − (2 logb 𝑅)))) |
19 | 11, 18 | eqtr3d 2774 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((⌊‘-(2 logb 𝑅)) + 1) = (⌊‘(1 − (2 logb 𝑅)))) |
20 | 8, 19 | breqtrd 5174 | . 2 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅)))) |
21 | 3 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ (ℤ≥‘2)) |
22 | 2rp 12983 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ ℝ+) |
24 | 1red 11219 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ+ → 1 ∈ ℝ) | |
25 | 24, 5 | resubcld 11646 | . . . . . . . 8 ⊢ (𝑅 ∈ ℝ+ → (1 − (2 logb 𝑅)) ∈ ℝ) |
26 | 25 | flcld 13767 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) |
27 | 23, 26 | rpexpcld 14214 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) |
28 | 27 | rpreccld 13030 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+) |
29 | id 22 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ+) | |
30 | logblt 26513 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) | |
31 | 21, 28, 29, 30 | syl3anc 1371 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) |
32 | logbrec 26511 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) | |
33 | 21, 27, 32 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) |
34 | 33 | breq1d 5158 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅) ↔ -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅))) |
35 | relogbzcl 26503 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) | |
36 | 21, 27, 35 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) |
37 | ltnegcon1 11719 | . . . . 5 ⊢ (((2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ ∧ (2 logb 𝑅) ∈ ℝ) → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) | |
38 | 36, 5, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) |
39 | 31, 34, 38 | 3bitrd 304 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) |
40 | nnlogbexp 26510 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) | |
41 | 21, 26, 40 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) |
42 | 41 | breq2d 5160 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) |
43 | 39, 42 | bitrd 278 | . 2 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) |
44 | 20, 43 | mpbird 256 | 1 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 class class class wbr 5148 ‘cfv 6543 (class class class)co 7411 ℂcc 11110 ℝcr 11111 1c1 11113 + caddc 11115 < clt 11252 − cmin 11448 -cneg 11449 / cdiv 11875 2c2 12271 ℤcz 12562 ℤ≥cuz 12826 ℝ+crp 12978 ⌊cfl 13759 ↑cexp 14031 logb clogb 26493 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-ioo 13332 df-ioc 13333 df-ico 13334 df-icc 13335 df-fz 13489 df-fzo 13632 df-fl 13761 df-mod 13839 df-seq 13971 df-exp 14032 df-fac 14238 df-bc 14267 df-hash 14295 df-shft 15018 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-limsup 15419 df-clim 15436 df-rlim 15437 df-sum 15637 df-ef 16015 df-sin 16017 df-cos 16018 df-pi 16020 df-struct 17084 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-starv 17216 df-sca 17217 df-vsca 17218 df-ip 17219 df-tset 17220 df-ple 17221 df-ds 17223 df-unif 17224 df-hom 17225 df-cco 17226 df-rest 17372 df-topn 17373 df-0g 17391 df-gsum 17392 df-topgen 17393 df-pt 17394 df-prds 17397 df-xrs 17452 df-qtop 17457 df-imas 17458 df-xps 17460 df-mre 17534 df-mrc 17535 df-acs 17537 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18987 df-cntz 19222 df-cmn 19691 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-fbas 21141 df-fg 21142 df-cnfld 21145 df-top 22616 df-topon 22633 df-topsp 22655 df-bases 22669 df-cld 22743 df-ntr 22744 df-cls 22745 df-nei 22822 df-lp 22860 df-perf 22861 df-cn 22951 df-cnp 22952 df-haus 23039 df-tx 23286 df-hmeo 23479 df-fil 23570 df-fm 23662 df-flim 23663 df-flf 23664 df-xms 24046 df-ms 24047 df-tms 24048 df-cncf 24618 df-limc 25607 df-dv 25608 df-log 26289 df-cxp 26290 df-logb 26494 |
This theorem is referenced by: dya2icoseg 33562 |
Copyright terms: Public domain | W3C validator |