Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dya2ub Structured version   Visualization version   GIF version

Theorem dya2ub 34273
Description: An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.)
Assertion
Ref Expression
dya2ub (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅)

Proof of Theorem dya2ub
StepHypRef Expression
1 2z 12651 . . . . . . 7 2 ∈ ℤ
2 uzid 12894 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
31, 2ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
4 relogbzcl 26818 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ 𝑅 ∈ ℝ+) → (2 logb 𝑅) ∈ ℝ)
53, 4mpan 690 . . . . 5 (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℝ)
65renegcld 11691 . . . 4 (𝑅 ∈ ℝ+ → -(2 logb 𝑅) ∈ ℝ)
7 flltp1 13841 . . . 4 (-(2 logb 𝑅) ∈ ℝ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1))
86, 7syl 17 . . 3 (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1))
9 1z 12649 . . . . 5 1 ∈ ℤ
10 fladdz 13866 . . . . 5 ((-(2 logb 𝑅) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1))
116, 9, 10sylancl 586 . . . 4 (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1))
125recnd 11290 . . . . . 6 (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℂ)
13 ax-1cn 11214 . . . . . 6 1 ∈ ℂ
14 negsubdi 11566 . . . . . . 7 (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (-(2 logb 𝑅) + 1))
15 negsubdi2 11569 . . . . . . 7 (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (1 − (2 logb 𝑅)))
1614, 15eqtr3d 2778 . . . . . 6 (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅)))
1712, 13, 16sylancl 586 . . . . 5 (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅)))
1817fveq2d 6909 . . . 4 (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = (⌊‘(1 − (2 logb 𝑅))))
1911, 18eqtr3d 2778 . . 3 (𝑅 ∈ ℝ+ → ((⌊‘-(2 logb 𝑅)) + 1) = (⌊‘(1 − (2 logb 𝑅))))
208, 19breqtrd 5168 . 2 (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))
213a1i 11 . . . . 5 (𝑅 ∈ ℝ+ → 2 ∈ (ℤ‘2))
22 2rp 13040 . . . . . . . 8 2 ∈ ℝ+
2322a1i 11 . . . . . . 7 (𝑅 ∈ ℝ+ → 2 ∈ ℝ+)
24 1red 11263 . . . . . . . . 9 (𝑅 ∈ ℝ+ → 1 ∈ ℝ)
2524, 5resubcld 11692 . . . . . . . 8 (𝑅 ∈ ℝ+ → (1 − (2 logb 𝑅)) ∈ ℝ)
2625flcld 13839 . . . . . . 7 (𝑅 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ)
2723, 26rpexpcld 14287 . . . . . 6 (𝑅 ∈ ℝ+ → (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+)
2827rpreccld 13088 . . . . 5 (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+)
29 id 22 . . . . 5 (𝑅 ∈ ℝ+𝑅 ∈ ℝ+)
30 logblt 26828 . . . . 5 ((2 ∈ (ℤ‘2) ∧ (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+𝑅 ∈ ℝ+) → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅)))
3121, 28, 29, 30syl3anc 1372 . . . 4 (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅)))
32 logbrec 26826 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))
3321, 27, 32syl2anc 584 . . . . 5 (𝑅 ∈ ℝ+ → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))
3433breq1d 5152 . . . 4 (𝑅 ∈ ℝ+ → ((2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅) ↔ -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅)))
35 relogbzcl 26818 . . . . . 6 ((2 ∈ (ℤ‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ)
3621, 27, 35syl2anc 584 . . . . 5 (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ)
37 ltnegcon1 11765 . . . . 5 (((2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ ∧ (2 logb 𝑅) ∈ ℝ) → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))))
3836, 5, 37syl2anc 584 . . . 4 (𝑅 ∈ ℝ+ → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))))
3931, 34, 383bitrd 305 . . 3 (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))))
40 nnlogbexp 26825 . . . . 5 ((2 ∈ (ℤ‘2) ∧ (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅))))
4121, 26, 40syl2anc 584 . . . 4 (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅))))
4241breq2d 5154 . . 3 (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅)))))
4339, 42bitrd 279 . 2 (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅)))))
4420, 43mpbird 257 1 (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107   class class class wbr 5142  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  1c1 11157   + caddc 11159   < clt 11296  cmin 11493  -cneg 11494   / cdiv 11921  2c2 12322  cz 12615  cuz 12879  +crp 13035  cfl 13831  cexp 14103   logb clogb 26808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-fac 14314  df-bc 14343  df-hash 14371  df-shft 15107  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-limsup 15508  df-clim 15525  df-rlim 15526  df-sum 15724  df-ef 16104  df-sin 16106  df-cos 16107  df-pi 16109  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-lp 23145  df-perf 23146  df-cn 23236  df-cnp 23237  df-haus 23324  df-tx 23571  df-hmeo 23764  df-fil 23855  df-fm 23947  df-flim 23948  df-flf 23949  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-limc 25902  df-dv 25903  df-log 26599  df-cxp 26600  df-logb 26809
This theorem is referenced by:  dya2icoseg  34280
  Copyright terms: Public domain W3C validator