|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dya2ub | Structured version Visualization version GIF version | ||
| Description: An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.) | 
| Ref | Expression | 
|---|---|
| dya2ub | ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 2z 12651 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
| 2 | uzid 12894 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
| 3 | 1, 2 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) | 
| 4 | relogbzcl 26818 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑅 ∈ ℝ+) → (2 logb 𝑅) ∈ ℝ) | |
| 5 | 3, 4 | mpan 690 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℝ) | 
| 6 | 5 | renegcld 11691 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) ∈ ℝ) | 
| 7 | flltp1 13841 | . . . 4 ⊢ (-(2 logb 𝑅) ∈ ℝ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < ((⌊‘-(2 logb 𝑅)) + 1)) | 
| 9 | 1z 12649 | . . . . 5 ⊢ 1 ∈ ℤ | |
| 10 | fladdz 13866 | . . . . 5 ⊢ ((-(2 logb 𝑅) ∈ ℝ ∧ 1 ∈ ℤ) → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) | |
| 11 | 6, 9, 10 | sylancl 586 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = ((⌊‘-(2 logb 𝑅)) + 1)) | 
| 12 | 5 | recnd 11290 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2 logb 𝑅) ∈ ℂ) | 
| 13 | ax-1cn 11214 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 14 | negsubdi 11566 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (-(2 logb 𝑅) + 1)) | |
| 15 | negsubdi2 11569 | . . . . . . 7 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 logb 𝑅) − 1) = (1 − (2 logb 𝑅))) | |
| 16 | 14, 15 | eqtr3d 2778 | . . . . . 6 ⊢ (((2 logb 𝑅) ∈ ℂ ∧ 1 ∈ ℂ) → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) | 
| 17 | 12, 13, 16 | sylancl 586 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) + 1) = (1 − (2 logb 𝑅))) | 
| 18 | 17 | fveq2d 6909 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(-(2 logb 𝑅) + 1)) = (⌊‘(1 − (2 logb 𝑅)))) | 
| 19 | 11, 18 | eqtr3d 2778 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((⌊‘-(2 logb 𝑅)) + 1) = (⌊‘(1 − (2 logb 𝑅)))) | 
| 20 | 8, 19 | breqtrd 5168 | . 2 ⊢ (𝑅 ∈ ℝ+ → -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅)))) | 
| 21 | 3 | a1i 11 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ (ℤ≥‘2)) | 
| 22 | 2rp 13040 | . . . . . . . 8 ⊢ 2 ∈ ℝ+ | |
| 23 | 22 | a1i 11 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → 2 ∈ ℝ+) | 
| 24 | 1red 11263 | . . . . . . . . 9 ⊢ (𝑅 ∈ ℝ+ → 1 ∈ ℝ) | |
| 25 | 24, 5 | resubcld 11692 | . . . . . . . 8 ⊢ (𝑅 ∈ ℝ+ → (1 − (2 logb 𝑅)) ∈ ℝ) | 
| 26 | 25 | flcld 13839 | . . . . . . 7 ⊢ (𝑅 ∈ ℝ+ → (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) | 
| 27 | 23, 26 | rpexpcld 14287 | . . . . . 6 ⊢ (𝑅 ∈ ℝ+ → (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) | 
| 28 | 27 | rpreccld 13088 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+) | 
| 29 | id 22 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ+) | |
| 30 | logblt 26828 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ+ ∧ 𝑅 ∈ ℝ+) → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) | |
| 31 | 21, 28, 29, 30 | syl3anc 1372 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅))) | 
| 32 | logbrec 26826 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) | |
| 33 | 21, 27, 32 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) = -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅)))))) | 
| 34 | 33 | breq1d 5152 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → ((2 logb (1 / (2↑(⌊‘(1 − (2 logb 𝑅)))))) < (2 logb 𝑅) ↔ -(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅))) | 
| 35 | relogbzcl 26818 | . . . . . 6 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (2↑(⌊‘(1 − (2 logb 𝑅)))) ∈ ℝ+) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) | |
| 36 | 21, 27, 35 | syl2anc 584 | . . . . 5 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ) | 
| 37 | ltnegcon1 11765 | . . . . 5 ⊢ (((2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ∈ ℝ ∧ (2 logb 𝑅) ∈ ℝ) → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) | |
| 38 | 36, 5, 37 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) < (2 logb 𝑅) ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) | 
| 39 | 31, 34, 38 | 3bitrd 305 | . . 3 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))))) | 
| 40 | nnlogbexp 26825 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ (⌊‘(1 − (2 logb 𝑅))) ∈ ℤ) → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) | |
| 41 | 21, 26, 40 | syl2anc 584 | . . . 4 ⊢ (𝑅 ∈ ℝ+ → (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) = (⌊‘(1 − (2 logb 𝑅)))) | 
| 42 | 41 | breq2d 5154 | . . 3 ⊢ (𝑅 ∈ ℝ+ → (-(2 logb 𝑅) < (2 logb (2↑(⌊‘(1 − (2 logb 𝑅))))) ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) | 
| 43 | 39, 42 | bitrd 279 | . 2 ⊢ (𝑅 ∈ ℝ+ → ((1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅 ↔ -(2 logb 𝑅) < (⌊‘(1 − (2 logb 𝑅))))) | 
| 44 | 20, 43 | mpbird 257 | 1 ⊢ (𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 class class class wbr 5142 ‘cfv 6560 (class class class)co 7432 ℂcc 11154 ℝcr 11155 1c1 11157 + caddc 11159 < clt 11296 − cmin 11493 -cneg 11494 / cdiv 11921 2c2 12322 ℤcz 12615 ℤ≥cuz 12879 ℝ+crp 13035 ⌊cfl 13831 ↑cexp 14103 logb clogb 26808 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-inf2 9682 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 ax-addf 11235 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-iin 4993 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-isom 6569 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-of 7698 df-om 7889 df-1st 8015 df-2nd 8016 df-supp 8187 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-2o 8508 df-er 8746 df-map 8869 df-pm 8870 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-fsupp 9403 df-fi 9452 df-sup 9483 df-inf 9484 df-oi 9551 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-ioo 13392 df-ioc 13393 df-ico 13394 df-icc 13395 df-fz 13549 df-fzo 13696 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-fac 14314 df-bc 14343 df-hash 14371 df-shft 15107 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-limsup 15508 df-clim 15525 df-rlim 15526 df-sum 15724 df-ef 16104 df-sin 16106 df-cos 16107 df-pi 16109 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-submnd 18798 df-mulg 19087 df-cntz 19336 df-cmn 19801 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-fbas 21362 df-fg 21363 df-cnfld 21366 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-cld 23028 df-ntr 23029 df-cls 23030 df-nei 23107 df-lp 23145 df-perf 23146 df-cn 23236 df-cnp 23237 df-haus 23324 df-tx 23571 df-hmeo 23764 df-fil 23855 df-fm 23947 df-flim 23948 df-flf 23949 df-xms 24331 df-ms 24332 df-tms 24333 df-cncf 24905 df-limc 25902 df-dv 25903 df-log 26599 df-cxp 26600 df-logb 26809 | 
| This theorem is referenced by: dya2icoseg 34280 | 
| Copyright terms: Public domain | W3C validator |